Nanoparticle tracking analysis

Last updated

Nanoparticle tracking analysis (NTA) is a method for visualizing and analyzing particles in liquids that relates the rate of Brownian motion to particle size. The rate of movement is related only to the viscosity and temperature of the liquid; it is not influenced by particle density or refractive index. NTA allows the determination of a size distribution profile of small particles with a diameter of approximately 10-1000 nanometers (nm) in liquid suspension.

Contents

The technique is used in conjunction with an ultramicroscope and a laser illumination unit that together allow small particles in liquid suspension to be visualized moving under Brownian motion. The light scattered by the particles is captured using a CCD or EMCCD camera over multiple frames. Computer software is then used to track the motion of each particle from frame to frame. The rate of particle movement is related to a sphere equivalent hydrodynamic radius as calculated through the Stokes–Einstein equation. The technique calculates particle size on a particle-by particle basis, overcoming inherent weaknesses in ensemble techniques such as dynamic light scattering. [1] Since video clips form the basis of the analysis, accurate characterization of real time events such as aggregation and dissolution is possible. Samples require minimal preparation, minimizing the time required to process each sample. Speculators suggest that eventually the analysis may be done in real-time with no preparation, e.g. when detecting the presence of airborne viruses or biological weapons.

NTA currently operates for particles from about 10 to 1000 nm in diameter, depending on particle type. Analysis of particles at the lowest end of this range is possible only for particles composed of materials with a high refractive index, such gold and silver. The upper size limit is restricted by the limited Brownian motion of large particles; because a large particle moves very slowly, accuracy is diminished. The viscosity of the solvent also influences the movement of particles, and it, too, plays a part in determining the upper size limit for a specific system.


Applications

NTA has been used by commercial, academic, and government laboratories working with nanoparticle toxicology, drug delivery, exosomes, microvesicles, bacterial membrane vesicles, and other small biological particles, virology and vaccine production, ecotoxicology, protein aggregation, orthopedic implants, inks and pigments, and nanobubbles.[ citation needed ]

iNTA

Interferometric nanoparticle tracking analysis (iNTA) is the next generation of NTA technology. It is based on interferometric scattering microscopy (iSCAT), which enhances the signal of weak scatterers. In contrast to NTA, iNTA has a superior resolution based on a two-parameter analysis, including the size and the scattering cross-section of the particle. [2]

Comparison to dynamic light scattering

Typical image produced by NTA. NTA Particle Tracks.png
Typical image produced by NTA.

Both dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) measure the Brownian motion of nanoparticles whose speed of motion, or diffusion constant, Dt, is related to particle size through the Stokes–Einstein equation.

where

In NTA this motion is analyzed by video – individual particle positional changes are tracked in two dimensions from which the particle diffusion is determined. Knowing Dt, the particle hydrodynamic diameter can be then determined.

In contrast, DLS does not visualize the particles individually but analyzes, using a digital correlator, the time dependent scattering intensity fluctuations. These fluctuations are caused by interference effects arising from the relative Brownian movements of an ensemble of a large number of particles within a sample. Through analysis of the resultant exponential autocorrelation function, average particle size can be calculated as well as a polydispersity index. For multi-exponential autocorrelation functions arising from polydisperse samples, deconvolution can give limited information about the particle size distribution profile.

History

NTA and related technologies were developed by Bob Carr. [3] Along with John Knowles, Carr founded NanoSight Ltd in 2003. This United Kingdom-based company, of which Knowles is the chairman and Carr is the chief technology officer, manufactures instruments that use NTA to detect and analyze small particles in industrial and academic laboratories. [4] In 2004 Particle Metrix GmbH was founded in Germany by Hanno Wachernig. Particle Metrix makes the ZetaView which operates on the same NTA principle but uses different optics and fluidics in an attempt to improve sampling, zeta potential, and fluorescence detection.

See also

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion, or pedesis, is the random motion of particles suspended in a medium.

<span class="mw-page-title-main">Size-exclusion chromatography</span> Chromatographic method in which dissolved molecules are separated by their size & molecular weight

Size-exclusion chromatography (SEC), also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight. It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers. Typically, when an aqueous solution is used to transport the sample through the column, the technique is known as gel-filtration chromatography, versus the name gel permeation chromatography, which is used when an organic solvent is used as a mobile phase. The chromatography column is packed with fine, porous beads which are commonly composed of dextran, agarose, or polyacrylamide polymers. The pore sizes of these beads are used to estimate the dimensions of macromolecules. SEC is a widely used polymer characterization method because of its ability to provide good molar mass distribution (Mw) results for polymers.

An ultramicroscope is a microscope with a system that lights the object in a way that allows viewing of tiny particles via light scattering, and not light reflection or absorption. When the diameter of a particle is below or near the wavelength of visible light, the particle cannot be seen in a light microscope with the usual methods of illumination. The ultra- in ultramicroscope refers to the ability to see objects whose diameter is shorter than the wavelength of visible light, on the model of the ultra- in ultraviolet.

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

<span class="mw-page-title-main">Dynamic light scattering</span> Technique for determining size distribution of particles

Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function. In the time domain analysis, the autocorrelation function (ACF) usually decays starting from zero delay time, and faster dynamics due to smaller particles lead to faster decorrelation of scattered intensity trace. It has been shown that the intensity ACF is the Fourier transform of the power spectrum, and therefore the DLS measurements can be equally well performed in the spectral domain. DLS can also be used to probe the behavior of complex fluids such as concentrated polymer solutions.

The equivalent spherical diameter of an irregularly shaped object is the diameter of a sphere of equivalent geometric, optical, electrical, aerodynamic or hydrodynamic behavior to that of the particle under investigation.

<span class="mw-page-title-main">Particle-size distribution</span>

The particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amount, typically by mass, of particles present according to size. Significant energy is usually required to disintegrate soil, etc. particles into the PSD that is then called a grain size distribution.

Electrophoretic light scattering is based on dynamic light scattering. The frequency shift or phase shift of an incident laser beam depends on the dispersed particles mobility. With dynamic light scattering, Brownian motion causes particle motion. With electrophoretic light scattering, oscillating electric field performs this function.

<span class="mw-page-title-main">Particle size</span> Notion for comparing dimensions of particles in different states of matter

Particle size is a notion introduced for comparing dimensions of solid particles, liquid particles (droplets), or gaseous particles (bubbles). The notion of particle size applies to particles in colloids, in ecology, in granular material, and to particles that form a granular material.

<span class="mw-page-title-main">Particle size analysis</span>

Particle size analysis, particle size measurement, or simply particle sizing, is the collective name of the technical procedures, or laboratory techniques which determines the size range, and/or the average, or mean size of the particles in a powder or liquid sample.

<span class="mw-page-title-main">Field flow fractionation</span> Separation technique to characterize the size of colloidal particles

Field-flow fractionation, abbreviated FFF, is a separation technique which does not have a stationary phase. It is similar to liquid chromatography as it works on dilute solutions or suspensions of the solute. Separation is achieved by applying a field perpendicular to the direction of transport of the sample which is pumped through a long and narrow channel. The field exerts a force on the sample components concentrating them towards one of the channel walls, which is called accumulation wall. The force interacts with a property of the sample on which then the separation occurs, in other words on their differing "mobilities" under the force exerted by the field. As an example, for the hydraulic, or cross-flow FFF method, the property driving separation is the translational diffusion coefficient or the hydrodynamic size. For a thermal field, it is the ratio of the thermal and the translational diffusion coefficient.

Diffusing-wave spectroscopy (DWS) is an optical technique derived from dynamic light scattering (DLS) that studies the dynamics of scattered light in the limit of strong multiple scattering. It has been widely used in the past to study colloidal suspensions, emulsions, foams, gels, biological media and other forms of soft matter. If carefully calibrated, DWS allows the quantitative measurement of microscopic motion in a soft material, from which the rheological properties of the complex medium can be extracted via the microrheology approach.

A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids are engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in nanofluids are typically made of metals, oxides, carbides, or carbon nanotubes. Common base fluids include water, ethylene glycol and oil.

Brookhaven Instruments Corporation is a Nova Instruments company established in the late 1960s. Brookhaven Instruments designed modern techniques in characterizing nanoparticles, proteins, and polymers using light scattering techniques such as dynamic, static, electrophoretic, and phase analysis for particle size, zeta potential, molecular mass, and absolute molar mass analysis.

<span class="mw-page-title-main">Asymmetric flow field flow fractionation</span>

Asymmetrical flow field-flow fractionation (AF4) is most versatile and most widely used sub-technique within the family of field flow fractionation (FFF) methods. AF4 can be used in aqueous and organic solvents and is able to characterize nanoparticles, polymers and proteins. The theory for AF4 was conceived in 1986 and was established in 1987 and first published by Wahlund and Giddings. AF4 is distinct from symmetrical Flow FFF because it contains only one permeable wall so the cross-flow is caused only by the carrier liquid. The cross-flow is induced by the carrier liquid constantly exiting by way of the semi-permeable wall on the bottom of the channel.

Differential dynamic microscopy (DDM) is an optical technique that allows performing light scattering experiments by means of a simple optical microscope. DDM is suitable for typical soft materials such as for instance liquids or gels made of colloids, polymers and liquid crystals but also for biological materials like bacteria and cells.

Nanofluid-based direct solar collectors are solar thermal collectors where nanoparticles in a liquid medium can scatter and absorb solar radiation. They have recently received interest to efficiently distribute solar energy. Nanofluid-based solar collector have the potential to harness solar radiant energy more efficiently compared to conventional solar collectors. Nanofluids have recently found relevance in applications requiring quick and effective heat transfer such as industrial applications, cooling of microchips, microscopic fluidic applications, etc. Moreover, in contrast to conventional heat transfer like water, ethylene glycol, and molten salts, nanofluids are not transparent to solar radiant energy; instead, they absorb and scatter significantly the solar irradiance passing through them. Typical solar collectors use a black-surface absorber to collect the sun's heat energy which is then transferred to a fluid running in tubes embedded within. Various limitations have been discovered with these configuration and alternative concepts have been addressed. Among these, the use of nanoparticles suspended in a liquid is the subject of research. Nanoparticle materials including aluminium, copper, carbon nanotubes and carbon-nanohorns have been added to different base fluids and characterized in terms of their performance for improving heat transfer efficiency.

NanoSight Ltd is a company that designs and manufactures instruments for the scientific analysis of nanoparticles that are between approximately ten nanometers (nm) and one micron (μm) in diameter. The company was founded in 2003 by Bob Carr and John Knowles to further develop a technique Bob Carr had invented to visualize nanoparticles suspended in liquid. The company has since developed the technique of Nanoparticle Tracking Analysis (NTA), and they produce a series of instruments to count, size and visualize nanoparticles in liquid suspension using this patented technology.

<span class="mw-page-title-main">Characterization of nanoparticles</span> Measurement of physical and chemical properties of nanoparticles

The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles. Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties. Nanoparticles are unlike conventional chemicals in that their chemical composition and concentration are not sufficient metrics for a complete description, because they vary in other physical properties such as size, shape, surface properties, crystallinity, and dispersion state.

References

  1. Vasco Filipe, Andrea Hawe and Wim Jiskoot (2010). "Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates". Pharmaceutical Research. 27 (5): 796–810. doi:10.1007/s11095-010-0073-2. PMC   2852530 . PMID   20204471.
  2. Kashkanova, Anna D.; Blessing, Martin; Gemeinhardt, André; Soulat, Didier; Sandoghdar, Vahid (9 May 2022). "Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions". Nature Methods. 19 (5): 586–593. doi: 10.1038/s41592-022-01460-z . S2CID   244124743 . Retrieved 27 September 2022.
  3. Harding, Jill (10 May 2012). "Fast-growing Biotech firm scoops a Queen's Award". Salisbury Journal. Retrieved 27 September 2022.
  4. A Queen's Award for Enterprise for International Trade 2012 has been awarded to NanoSight. Nanotechnology Now, May 1, 2012.