Nanotube

Last updated

Rotating single-walled zigzag carbon nanotube Kohlenstoffnanoroehre Animation.gif
Rotating single-walled zigzag carbon nanotube

A nanotube is a nanoscale cylindrical structure with a hollow core, typically composed of carbon atoms, though other materials can also form nanotubes. Carbon nanotubes (CNTs) are the most well-known and widely studied type, consisting of rolled-up sheets of graphene with diameters ranging from about 1 to tens of nanometers and lengths up to millimeters. [1] [2] These structures exhibit remarkable physical, chemical, and electrical properties, including high tensile strength, excellent thermal and electrical conductivity, and unique quantum effects due to their one-dimensional nature. [2] Nanotubes can be classified into two main categories: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs), each with distinct characteristics and potential applications. Since their discovery in 1991, nanotubes have been the subject of intense research and development, with promising applications in fields such as electronics, materials science, energy storage, and medicine. [1] [3]

Contents

Types

Nanotubes builders

Related Research Articles

<span class="mw-page-title-main">Boron nitride</span> Refractory compound of boron and nitrogen with formula BN

Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs, and is therefore used as a lubricant and an additive to cosmetic products. The cubic variety analogous to diamond is called c-BN; it is softer than diamond, but its thermal and chemical stability is superior. The rare wurtzite BN modification is similar to lonsdaleite but slightly softer than the cubic form.

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:

<span class="mw-page-title-main">Fullerene</span> Allotrope of carbon

A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to six atoms. The molecules may have hollow sphere- and ellipsoid-like forms, tubes, or other shapes.

<span class="mw-page-title-main">Nanotechnology</span> Technology with features near one nanometer

Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. This definition of nanotechnology includes all types of research and technologies that deal with these special properties. It is common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to research and applications whose common trait is scale. An earlier understanding of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabricating macroscale products, now referred to as molecular nanotechnology.

β-Carbon nitride Chemical compound

β-Carbon nitride (beta-carbon nitride), β-C3N4, is a superhard material predicted to be harder than diamond.

<span class="mw-page-title-main">Aluminium nitride</span> Nitride of aluminum

Aluminium nitride (AlN) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potential application in optoelectronics operating at deep ultraviolet frequencies.

<span class="mw-page-title-main">Superhard material</span> Material with Vickers hardness exceeding 40 gigapascals

A superhard material is a material with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. They are virtually incompressible solids with high electron density and high bond covalency. As a result of their unique properties, these materials are of great interest in many industrial areas including, but not limited to, abrasives, polishing and cutting tools, disc brakes, and wear-resistant and protective coatings.

In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3- ion, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitrides have a found applications, such as wear-resistant coatings (e.g., titanium nitride, TiN), hard ceramic materials (e.g., silicon nitride, Si3N4), and semiconductors (e.g., gallium nitride, GaN). The development of GaN-based light emitting diodes was recognized by the 2014 Nobel Prize in Physics. Metal nitrido complexes are also common.

A non-carbon nanotube is a cylindrical molecule often composed of metal oxides, or group III-Nitrides and morphologically similar to a carbon nanotube. Non-carbon nanotubes have been observed to occur naturally in some mineral deposits.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Alex Zettl</span> American nano-scale physicist

Alex K. Zettl is an American experimental physicist, educator, and inventor.

<span class="mw-page-title-main">National Institute for Materials Science</span> Japanese scientific research university

National Institute for Materials Science is an Independent Administrative Institution and one of the largest scientific research centers in Japan.

<span class="mw-page-title-main">Optical properties of carbon nanotubes</span> Optical properties of the material

The optical properties of carbon nanotubes are highly relevant for materials science. The way those materials interact with electromagnetic radiation is unique in many respects, as evidenced by their peculiar absorption, photoluminescence (fluorescence), and Raman spectra.

<span class="mw-page-title-main">Borophene</span> Allotrope of boron

Borophene is a crystalline atomic monolayer of boron, i.e., it is a two-dimensional allotrope of boron and also known as boron sheet. First predicted by theory in the mid-1990s, different borophene structures were experimentally confirmed in 2015.

<span class="mw-page-title-main">Boron nitride nanotube</span> Polymorph of boron nitride

Boron nitride nanotubes (BNNTs) are a polymorph of boron nitride. They were predicted in 1994 and experimentally discovered in 1995. Structurally they are similar to carbon nanotubes, which are cylinders with sub-micrometer diameters and micrometer lengths, except that carbon atoms are alternately substituted by nitrogen and boron atoms. However, the properties of BN nanotubes are very different: whereas carbon nanotubes can be metallic or semiconducting depending on the rolling direction and radius, a BN nanotube is an electrical insulator with a bandgap of ~5.5 eV, basically independent of tube chirality and morphology. In addition, a layered BN structure is much more thermally and chemically stable than a graphitic carbon structure. BNNTs have unique physical and chemical properties, when compared to Carbon Nanotubes (CNTs) providing a very wide range of commercial and scientific applications. Although BNNTs and CNTs share similar tensile strength properties of circa 100 times stronger than steel and 50 times stronger than industrial-grade carbon fibre, BNNTs can withstand high temperatures of up to 900 °C. as opposed to CNTs which remain stable up to temperatures of 400 °C, and are also capable of absorbing radiation. BNNTS are packed with physicochemical features including high hydrophobicity and considerable hydrogen storage capacity and they are being investigated for possible medical and biomedical applications, including gene delivery, drug delivery, neutron capture therapy, and more generally as biomaterials BNNTs are also superior to CNTs in the way they bond to polymers giving rise to many new applications and composite materials.

<span class="mw-page-title-main">Gallium nitride nanotube</span> Nanotubes of gallium nitride

Gallium nitride nanotubes (GaNNTs) are nanotubes of gallium nitride. They can be grown by chemical vapour deposition.

Graphene-Boron Nitride nanohybrid materials are a class of compounds created from graphene and boron nitride nanosheets. Graphene and boron nitride both contain intrinsic thermally conductive and electrically insulative properties. The combination of these two compounds may be useful to advance the development and understanding of electronics.

<span class="mw-page-title-main">Boron nitride nanosheet</span>

Boron nitride nanosheet is a crystalline form of the hexagonal boron nitride (h-BN), which has a thickness of one atom. Similar in geometry as well as physical and thermal properties to its carbon analog graphene, but has very different chemical and electronic properties – contrary to the black and highly conducting graphene, BN nanosheets are electrical insulators with a band gap of ~5.9 eV, and therefore appear white in color.

<span class="mw-page-title-main">Sphere packing in a cylinder</span> Three-dimensional packing problem

Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures.

Yoke Khin Yap is an American physicist, materials scientist and academic. He is most known for his nanoscale and quantum-scale materials research, and serves as a professor of Physics at Michigan Technological University (MTU).

References

  1. 1 2 Maruyama S, Arnold MS, Krupke R, Peng LM (February 2022). "Physics and applications of nanotubes". Journal of Applied Physics. 131 (8). doi:10.1063/5.0087075.
  2. 1 2 Ren G (September 2024). "Carbon nanotube". Encyclopedia Britannica.
  3. Reidel H (March 2017). "Current and Potential Applications of Carbon Nanotubes". PreScouter.
  4. Luo L, Mo L, Tong Z, Chen Y (May 2009). "Facile Synthesis of Ternary Boron Carbonitride Nanotubes". Nanoscale Research Letters. 4 (8): 834–838. doi:10.1007/s11671-009-9325-7. PMC   2894111 . PMID   20596377.
  5. Rubio A, Corkill JL, Cohen ML (February 1994). "Theory of graphitic boron nitride nanotubes". Physical Review B. 49 (7): 5081–5084. Bibcode:1994PhRvB..49.5081R. doi:10.1103/PhysRevB.49.5081. PMID   10011453.
  6. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, et al. (August 1995). "Boron nitride nanotubes". Science. 269 (5226): 966–967. Bibcode:1995Sci...269..966C. doi:10.1126/science.269.5226.966. PMID   17807732. S2CID   28988094.
  7. Iijima S, Ichihashi T (June 1993). "Single-shell carbon nanotubes of 1-nm diameter". Nature. 363 (6430): 603–605. doi:10.1038/363603a0. ISSN   1476-4687.
  8. Feldkamp U, Niemeyer CM (March 2006). "Rational design of DNA nanoarchitectures". Angewandte Chemie. 45 (12): 1856–1876. doi:10.1002/anie.200502358. PMID   16470892.
  9. Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi HJ, et al. (April 2003). "Single-crystal gallium nitride nanotubes". Nature. 422 (6932): 599–602. doi:10.1038/nature01551. PMID   12686996.
  10. Kiricsi I, Fudala Á, Kónya Z, Hernádi K, Lentz P, Nagy JB (2000). "The advantages of ozone treatment in the preparation of tubular silica structures". Applied Catalysis A: General. 203: L1–L4. doi:10.1016/S0926-860X(00)00563-9.
  11. Tenne R, Margulis L, Genut M, Hodes G (1992). "Polyhedral and cylindrical structures of tungsten disulphide". Nature. 360 (6403): 444–446. Bibcode:1992Natur.360..444T. doi:10.1038/360444a0. S2CID   4309310.
  12. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (February 2004). "Nanotubular highways for intercellular organelle transport". Science. 303 (5660): 1007–1010. doi:10.1126/science.1093133. PMID   14963329.
  13. Mogilevsky G, Chen Q, Kleinhammes A, Wu Y (2008). "The structure of multilayered titania nanotubes based on delaminated anatase". Chemical Physics Letters. 460 (4–6): 517–520. Bibcode:2008CPL...460..517M. doi:10.1016/j.cplett.2008.06.063.
  14. de Albornoz-Caratozzolo JM, Cervantes-Sodi F (December 2023). "Chiraltube, rolling 2D materials into chiral nanotubes". Nanoscale Advances. 6 (1): 79–91. doi:10.1039/D3NA00301A. PMC   10729892 . PMID   38125603.