Boron nitride nanotube

Last updated
BN nanotube was bent inside a transmission electron microscope. Its walls self-healed after release of pressure. Recovery of bent BN nanotube.jpg
BN nanotube was bent inside a transmission electron microscope. Its walls self-healed after release of pressure.

Boron nitride nanotubes (BNNTs) are a polymorph of boron nitride. They were predicted in 1994 [2] and experimentally discovered in 1995. [3] Structurally they are similar to carbon nanotubes, which are cylinders with sub-micrometer diameters and micrometer lengths, except that carbon atoms are alternately substituted by nitrogen and boron atoms. However, the properties of BN nanotubes are very different: whereas carbon nanotubes can be metallic or semiconducting depending on the rolling direction and radius, a BN nanotube is an electrical insulator with a bandgap of ~5.5 eV, basically independent of tube chirality and morphology. [4] In addition, a layered BN structure is much more thermally and chemically stable than a graphitic carbon structure. [5] [6] BNNTs have unique physical and chemical properties, when compared to Carbon Nanotubes (CNTs) providing a very wide range of commercial and scientific applications. [7] Although BNNTs and CNTs share similar tensile strength properties of circa 100 times stronger than steel and 50 times stronger than industrial-grade carbon fibre, [8] BNNTs can withstand high temperatures of up to 900 °C. [9] as opposed to CNTs which remain stable up to temperatures of 400 °C, [10] and are also capable of absorbing radiation. [11] BNNTS are packed with physicochemical features including high hydrophobicity and considerable hydrogen storage capacity and they are being investigated for possible medical and biomedical applications, including gene delivery, drug delivery, neutron capture therapy, and more generally as biomaterials [12] BNNTs are also superior to CNTs in the way they bond to polymers giving rise to many new applications and composite materials. [11]

Contents

Synthesis and production

(a) Schematic of an RF induction thermal plasma system used for mass production of BNNTs. Pure h-BN powder is continuously transformed into BNNTs by passing through a high-temperature N2-H2 plasma (~8000 K). (b) Calculated temperature distribution inside the reactor. (c) Calculated velocity distribution (left) and streamlines (right). BN nantube RF reactor.png
(a) Schematic of an RF induction thermal plasma system used for mass production of BNNTs. Pure h-BN powder is continuously transformed into BNNTs by passing through a high-temperature N2-H2 plasma (~8000 K). (b) Calculated temperature distribution inside the reactor. (c) Calculated velocity distribution (left) and streamlines (right).
Meters-long BN buckypaper sheets can be fabricated by adding a cylindrical drum to the above reactor. BN buckypaper synthesis.jpg
Meters-long BN buckypaper sheets can be fabricated by adding a cylindrical drum to the above reactor.

All well-established techniques of carbon nanotube growth, such as arc-discharge, [3] [14] laser ablation [15] [16] and chemical vapor deposition, [17] are used for mass-production of BN nanotubes at a tens of grams scale. [13]

BN nanotubes can also be produced by ball milling of amorphous boron, mixed with a catalyst (iron powder), under NH3 atmosphere. Subsequent annealing at ~1100 °C in nitrogen flow transforms most of the product into BN. [18] [19] During ball milling, the repeated impact and friction cause mechanical deformation and increased defect density in the boron particles. [20] This mechanical activation enhances the diffusion of nitrogen into the boron particles during the annealing stage, promoting the formation of BNNTs. [21] Long milling time contributes to producing a high yield of BNNTs by enhancing the reaction between boron and NH3, leading to the formation of more nucleation sites, which in turn promotes the production of BNNTs. [22] This method is relatively cheaper but produced BNNTs have a significant amount of impurities. [23] A high-temperature high-pressure method is also suitable for BN nanotube synthesis. [24]

BNNT production route has been a significant issue due to low yield and poor quality in comparison with CNT, thus limiting its practical uses. However, many great successes in BNNT synthesis have been achieved in recent[ when? ] years, enabling access to this material and paving the way for the development of promising applications [8] Recently[ when? ] significant advancement have been made by Deakin University Australia with a ‘novel and scalable’ manufacturing process will allow the production of BNNTs in large quantities for the first time since the material was first discovered two decades ago. [25] Australian listed ASX entity PPK Group (ASX:PPK) signed a joint venture agreement with Deakin in November 2018 to form BNNT Technology Limited, with the goal of manufacturing boron nitride nanotubes (BNNT) on a commercial basis. [26] This collaboration is supported with investment by the Australian Government into BNNT Technology Limited [27] and may significantly increase the world supply of BNNT unlocking a new array of applications, materials, composites and technologies.

As of March 2022 PPK is reporting BNNT production is expected to increase 150% from currently 4 kg per week, to 10 kg per week when installation of two new six-furnace modules are installed. https://www.ppkgroup.com.au/site/PDF/92f2a2a3-5f72-430e-bec6-9bb89993e4c8/ExpansionofBNNTTLsproductionfacilities

Properties and potential applications

BN nanotube buckypaper is flame resistant, as shown in this comparative flame test of airplanes made of cellullose, carbon buckypaper and BN nanotube buckypaper. Flame test of buckypapers.jpg
BN nanotube buckypaper is flame resistant, as shown in this comparative flame test of airplanes made of cellullose, carbon buckypaper and BN nanotube buckypaper.

Electrical and field emission properties of BN nanotubes can be tuned by doping with gold atoms via sputtering of gold on the nanotubes. [18] [28] Doping rare-earth atoms of europium turns a BN nanotube into a phosphor material emitting visible light under electron excitation. [19] Quantum dots formed from 3 nm gold particles spaced across the nanotubes exhibit the properties of field-effect transistors at room temperature. [29]

Like BN fibers, boron nitride nanotubes show promise for aerospace applications where integration of boron and in particular the light isotope of boron (10B) into structural materials improves both their strength and their radiation-shielding properties; the improvement is due to strong neutron absorption by 10B. Such 10BN materials are of particular theoretical value as composite structural materials in future crewed interplanetary spacecraft, where absorption-shielding from cosmic ray spallation neutrons is expected to be a particular asset in light construction materials. [30]

Due to Boron Nitride Nanotubes' stability in both oceanic and atmospheric conditions up to 800°C, they are used in high-temperature applications such as thermal protection systems. [31] [32] BNTT mat shields large crafts from high aerothermal flux during atmospheric entry, descent, and landing. [33] BNTTs are also beneficial for turbines or engines operating in high-temperature environments. [34]

Toxicological [35] investigations on BNNTs in vivo and in vitro showed low toxicity [36] and in general, an enhanced chemical inertia, favoring its biocompatibility. Although not overtly toxic, the source of toxicity appears to be from the shape and the amount of BNNT/Impurities present. This was confirmed by a study that showed with increasing purity of BNNT a minor increase in toxicity. [37] Their use in the biomedical field was suggested both as nanocarriers and as nanotransducers. [38] BN nanotubes have also shown potential in certain cancer treatments. [39] [ clarification needed ]

High stiffness and excellent chemical stability makes BNNTs ideal material for reinforcement in polymers, ceramics and metals. For instance, buckypaper-based BNNT/epoxy composites and polyurethane-modified buckypaper composites have been successfully developed.1,16 These composite materials exhibit Young’s moduli over twice the value for neat epoxy and 20 times the value for unimpregnated buckypaper. BNNTs are also one of the most promising classes of material for reinforcing aluminum-based structures.17 The low reactivity of BNNTs facilitates the integration of this material into an aluminum matrix where CNTs fail due to the reaction between the carbon and the aluminum which forms the undesired Al4C3 phase at the interface. BNNTs also exhibit much higher oxidation temperature (~950 °C) than the melting point of aluminum (660 °C), which enables the homogenous dispersion of BNNTs directly into the aluminum melt. Since BNNTs retain their mechanical properties at high temperatures while having a very low density, the development of new temperature-resistant lightweight MMC is achievable. BNNTs also exhibit good thermal conductivity. This renders them useful for applications in nanoelectronics where heat dissipation is critical. This also makes BNNTs multifunctional as it not only improves the stiffness of composites but also yields high thermal conductivity along with high transparency. The combination of high stiffness and high transparency is already exploited in the development of BNNT-reinforced glass composites.18 Other intrinsic properties of BNNTs such as good radiation shielding ability,19 high electrical resistance and excellent piezoelectric properties are likely to promote interest for integrating them in new applications. [40]

Related Research Articles

<span class="mw-page-title-main">Boron nitride</span> Refractory compound of boron and nitrogen with formula BN

Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs, and is therefore used as a lubricant and an additive to cosmetic products. The cubic variety analogous to diamond is called c-BN; it is softer than diamond, but its thermal and chemical stability is superior. The rare wurtzite BN modification is similar to lonsdaleite but slightly softer than the cubic form.

<span class="mw-page-title-main">Boron</span> Chemical element, symbol B and atomic number 5

Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three valence electrons for forming covalent bonds, resulting in many compounds such as boric acid, the mineral sodium borate, and the ultra-hard crystals of boron carbide and boron nitride.

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:

<span class="mw-page-title-main">Aluminium nitride</span> Chemical compound

Aluminium nitride (AlN) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potential application in optoelectronics operating at deep ultraviolet frequencies.

<span class="mw-page-title-main">Superhard material</span> Material with Vickers hardness exceeding 40 gigapascals

A superhard material is a material with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. They are virtually incompressible solids with high electron density and high bond covalency. As a result of their unique properties, these materials are of great interest in many industrial areas including, but not limited to, abrasives, polishing and cutting tools, disc brakes, and wear-resistant and protective coatings.

A non-carbon nanotube is a cylindrical molecule often composed of metal oxides, or group III-Nitrides and morphologically similar to a carbon nanotube. Non-carbon nanotubes have been observed to occur naturally in some mineral deposits.

<span class="mw-page-title-main">Carbon nanofiber</span> Structured carbon fibers

Carbon nanofibers (CNFs), vapor grown carbon fibers (VGCFs), or vapor grown carbon nanofibers (VGCNFs) are cylindrical nanostructures with graphene layers arranged as stacked cones, cups or plates. Carbon nanofibers with graphene layers wrapped into perfect cylinders are called carbon nanotubes.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Potential applications of carbon nanotubes</span>

Carbon nanotubes (CNTs) are cylinders of one or more layers of graphene (lattice). Diameters of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) are typically 0.8 to 2 nm and 5 to 20 nm, respectively, although MWNT diameters can exceed 100 nm. CNT lengths range from less than 100 nm to 0.5 m.

<span class="mw-page-title-main">Alex Zettl</span> American nano-scale physicist

Alex K. Zettl is an American experimental physicist, educator, and inventor.

<span class="mw-page-title-main">Carbon nanotube supported catalyst</span> Novel catalyst using carbon nanotubes as the support instead of the conventional alumina

Carbon nanotube supported catalyst is a novel supported catalyst, using carbon nanotubes as the support instead of the conventional alumina or silicon support. The exceptional physical properties of carbon nanotubes (CNTs) such as large specific surface areas, excellent electron conductivity incorporated with the good chemical inertness, and relatively high oxidation stability makes it a promising support material for heterogeneous catalysis.

Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually borides, carbides, nitrides, and oxides of early transition metals.

Graphene-Boron Nitride nanohybrid materials are a class of compounds created from graphene and boron nitride nanosheets. Graphene and boron nitride both contain intrinsic thermally conductive and electrically insulative properties. The combination of these two compounds may be useful to advance the development and understanding of electronics.

In nanotechnology, carbon nanotube interconnects refer to the proposed use of carbon nanotubes in the interconnects between the elements of an integrated circuit. Carbon nanotubes (CNTs) can be thought of as single atomic layer graphite sheets rolled up to form seamless cylinders. Depending on the direction on which they are rolled, CNTs can be semiconducting or metallic. Metallic carbon nanotubes have been identified as a possible interconnect material for the future technology generations and to replace copper interconnects. Electron transport can go over long nanotube lengths, 1 μm, enabling CNTs to carry very high currents (i.e. up to a current density of 109 A∙cm−2) with essentially no heating due to nearly one dimensional electronic structure. Despite the current saturation in CNTs at high fields, the mitigation of such effects is possible due to encapsulated nanowires.

<span class="mw-page-title-main">Synthesis of carbon nanotubes</span> Class of manufacturing

Techniques have been developed to produce carbon nanotubes (CNTs) in sizable quantities, including arc discharge, laser ablation, high-pressure carbon monoxide disproportionation, and chemical vapor deposition (CVD). Most of these processes take place in a vacuum or with process gases. CVD growth of CNTs can occur in a vacuum or at atmospheric pressure. Large quantities of nanotubes can be synthesized by these methods; advances in catalysis and continuous growth are making CNTs more commercially viable.

In materials science, vertically aligned carbon nanotube arrays (VANTAs) are a unique microstructure consisting of carbon nanotubes oriented with their longitudinal axis perpendicular to a substrate surface. These VANTAs effectively preserve and often accentuate the unique anisotropic properties of individual carbon nanotubes and possess a morphology that may be precisely controlled. VANTAs are consequently widely useful in a range of current and potential device applications.

Nitrogen-doped carbon nanotubes (N-CNTs) can be produced through five main methods; chemical vapor deposition (CVD), high-temperature and high-pressure reactions, gas-solid reaction of amorphous carbon with NH3 at high temperature, solid reaction, and solvothermal synthesis.

<span class="mw-page-title-main">Boron nitride nanosheet</span>

Boron nitride nanosheet is a crystalline form of the hexagonal boron nitride (h-BN), which has a thickness of one atom. Similar in geometry as well as physical and thermal properties to its carbon analog graphene, but has very different chemical and electronic properties – contrary to the black and highly conducting graphene, BN nanosheets are electrical insulators with a band gap of ~5.9 eV, and therefore appear white in color.

Two dimensional hexagonal boron nitride is a material of comparable structure to graphene with potential applications in e.g. photonics., fuel cells and as a substrate for two-dimensional heterostructures. 2D h-BN is isostructural to graphene, but where graphene is conductive, 2D h-BN is a wide-gap insulator.

Yoke Khin Yap is an American physicist, materials scientist and academic. He is most known for his nanoscale and quantum-scale materials research, and serves as a professor of Physics at Michigan Technological University (MTU).

References

  1. Golberg, Dmitri; Costa, Pedro M. F. J.; Mitome, Masanori; Bando, Yoshio (2009). "Properties and engineering of individual inorganic nanotubes in a transmission electron microscope". Journal of Materials Chemistry. 19 (7): 909. doi:10.1039/B814607A.
  2. Rubio, A.; et al. (1994). "Theory of Graphitic Boron Nitride Nanotubes". Physical Review B. 49 (7): 5081–5084. Bibcode:1994PhRvB..49.5081R. doi:10.1103/PhysRevB.49.5081. PMID   10011453.
  3. 1 2 Chopra, N. G.; et al. (1995). "Boron Nitride Nanotubes". Science. 269 (5226): 966–7. Bibcode:1995Sci...269..966C. doi:10.1126/science.269.5226.966. PMID   17807732. S2CID   28988094.
  4. Blase, X.; et al. (1994). "Stability and Band Gap Constancy of Boron Nitride Nanotubes". Europhysics Letters (EPL). 28 (5): 335. Bibcode:1994EL.....28..335B. doi:10.1209/0295-5075/28/5/007. S2CID   120010610.
  5. Wei-Qiang Han; et al. (2002). "Transformation of BxCyNz Nanotubes to Pure BN Nanotubes" (PDF). Applied Physics Letters. 81 (6): 1110. Bibcode:2002ApPhL..81.1110H. doi:10.1063/1.1498494.
  6. Golberg, D.; Bando, Y.; Tang, C.C. & Zhi, C.Y. (2007). "Boron Nitride Nanotubes". Advanced Materials. 19 (18): 2413. Bibcode:2007AdM....19.2413G. doi:10.1002/adma.200700179. S2CID   100255406.
  7. Kim, Jun Hee; Pham, Thang Viet; Hwang, Jae Hun; Kim, Cheol Sang; Kim, Myung Jong (2018-06-28). "Boron nitride nanotubes: synthesis and applications". Nano Convergence. 5 (1): 17. Bibcode:2018NanoC...5...17K. doi: 10.1186/s40580-018-0149-y . ISSN   2196-5404. PMC   6021457 . PMID   30046512.
  8. 1 2 Kim, Jun Hee; Pham, Thang Viet; Hwang, Jae Hun; Kim, Cheol Sang; Kim, Myung Jong (2018-06-28). "Boron nitride nanotubes: synthesis and applications". Nano Convergence. 5 (1): 17. Bibcode:2018NanoC...5...17K. doi: 10.1186/s40580-018-0149-y . ISSN   2196-5404. PMC   6021457 . PMID   30046512.
  9. "Step toward creating planes that travel at hypersonic speed: Air travel times could be drastically reduced by rare material". ScienceDaily. Retrieved 2020-03-20.
  10. Mahajan, Amit; Kingon, Angus; Kukovecz, Ákos; Konya, Zoltan; Vilarinho, Paula M. (2013-01-01). "Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres". Materials Letters. 90: 165–168. Bibcode:2013MatL...90..165M. doi:10.1016/j.matlet.2012.08.120. ISSN   0167-577X.
  11. 1 2 Elsevier, Name |. "CNT's are old stuff. Make room for BNNT – it is stronger and can take the heat!". chemical-materials.elsevier.com. Archived from the original on 2020-10-21. Retrieved 2020-03-20.
  12. Şen, Özlem; Emanet, Melis; Çulha, Mustafa (2016-01-01), Ciofani, Gianni; Mattoli, Virgilio (eds.), "Chapter 3 - Biocompatibility evaluation of boron nitride nanotubes", Boron Nitride Nanotubes in Nanomedicine, Micro and Nano Technologies, William Andrew Publishing, pp. 41–58, ISBN   978-0-323-38945-7 , retrieved 2020-03-20
  13. 1 2 3 4 Kim, Keun Su; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Ashrafi, Behnam; Guan, Jingwen; O'Neill, K.; Plunkett, Mark; Hrdina, Amy; Lin, Shuqiong; Dénommée, Stéphane; Kingston, Christopher; Simard, Benoit (2015). "Polymer nanocomposites from free-standing, macroscopic boron nitride nanotube assemblies". RSC Adv. 5 (51): 41186. Bibcode:2015RSCAd...541186K. doi:10.1039/C5RA02988K.
  14. Cumings, J. (2000). "Mass-Production of Boron Nitride Double-Wall Nanotubes and Nanococoons". Chemical Physics Letters. 316 (3–4): 211. Bibcode:2000CPL...316..211C. doi:10.1016/S0009-2614(99)01277-4.
  15. Golberg, D.; et al. (1996). "Nanotubes in Boron Nitride Laser Heated at High Pressure". Applied Physics Letters. 69 (14): 2045. Bibcode:1996ApPhL..69.2045G. doi:10.1063/1.116874.
  16. Yu, D. P.; et al. (1998). "Synthesis of Boron Nitride Nanotubes by Means of Excimer Laser Ablation at High Temperature". Applied Physics Letters. 72 (16): 1966. Bibcode:1998ApPhL..72.1966Y. doi:10.1063/1.121236.
  17. Zhi, C.; et al. (2005). "Effective Precursor for High Yield Synthesis of Pure BN Nanotubes". Solid State Communications. 135 (1–2): 67. Bibcode:2005SSCom.135...67Z. doi:10.1016/j.ssc.2005.03.062.
  18. 1 2 Chen, H.; et al. (2008). "Nano Au-Decorated Boron Nitride Nanotubes: Conductance Modification and Field-Emission Enhancement" (PDF). Applied Physics Letters. 92 (24): 243105. Bibcode:2008ApPhL..92x3105C. doi:10.1063/1.2943653. Archived from the original (PDF) on 2011-07-20.
  19. 1 2 Chen, H.; et al. (2007). "Eu-Doped Boron Nitride Nanotubes as a Nanometer-Sized Visible-Light Source" (PDF). Advanced Materials. 19 (14): 1845. Bibcode:2007AdM....19.1845C. doi:10.1002/adma.200700493. S2CID   94466192. Archived from the original (PDF) on 2011-07-20.
  20. Hashmi, Saleem; Batalha, Gilmar; Tyne, Chester (2014). "A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures". Comprehensive Materials Processing. 8: 103–125. doi:10.1016/B978-0-08-096532-1.00811-6. ISBN   978-0-08-096533-8 . Retrieved June 6, 2024.
  21. Kim, Jaewoo; Lee, Sol; Uhm, Young (2011). "Synthesis and growth of boron nitride nanotubes by a ball milling–annealing process". Acta Materialia. 59 (7): 2807–2813. Bibcode:2011AcMat..59.2807K. doi:10.1016/j.actamat.2011.01.019 . Retrieved June 6, 2024.
  22. JH, Kim; TV, Pham; JH, Hwag (2018). "Boron nitride nanotubes: synthesis and applications". Nano Converg. 5 (1): 17. Bibcode:2018NanoC...5...17K. doi: 10.1186/s40580-018-0149-y . PMC   6021457 . PMID   30046512.
  23. Ross, Lisa. "Boron Nitride Nanotubes and Their Applications". Precise Ceramics. Retrieved June 6, 2024.
  24. Smith, Michael W; Jordan, Kevin C; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T; Crooks, Roy; Harrison, Joycelyn S (16 December 2009). "Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method". Nanotechnology. 20 (50): 505604. Bibcode:2009Nanot..20X5604S. doi:10.1088/0957-4484/20/50/505604. hdl: 2060/20090042520 . PMID   19907071. S2CID   25104963.
  25. Jasmina (2017-03-05). "Deakin researchers achieve world-first BNNT breakthrough". Australian Manufacturing. Retrieved 2020-03-20.
  26. Ogg, Matt. "Fast-riser PPK takes high-tech materials up a notch with Deakin University". Business News Australia. Retrieved 2020-03-22.
  27. Smon, Bernadette (2018-09-07). "$19M boost for advanced manufacturers". www.minister.industry.gov.au. Retrieved 2020-03-23.
  28. Chen, Y.; et al. (2008). "Au Doped BN Nanotubes with Tunable Conductivity". Nano. 2 (6): 367. doi:10.1142/S1793292007000702.
  29. Lee, C. H.; Qin, S.; Savaikar, M. A.; Wang, J.; Hao, B.; Zhang, D.; Banyai, D.; Jaszczak, J. A.; Clark, K. W.; Idrobo, J. C.; Li, A. P.; Yap, Y. K. (2013). "Room-Temperature Tunneling Behavior of Boron Nitride Nanotubes Functionalized with Gold Quantum Dots". Advanced Materials. 25 (33): 4544–8. Bibcode:2013AdM....25.4544L. doi:10.1002/adma.201301339. PMID   23775671. S2CID   12049641.
  30. Yu, J.; et al. (2006). "Isotopically Enriched 10BN Nanotubes" (PDF). Advanced Materials. 18 (16): 2157. Bibcode:2006AdM....18.2157Y. doi:10.1002/adma.200600231. S2CID   135710601. Archived from the original (PDF) on 2011-07-17.
  31. Ross, Lisa. "Modern Research Direction of Boron Nitride Nanotubes". Precise Ceramics. Retrieved June 9, 2024.
  32. Chen, Xiaoming; Ke, Changhong (2016). "Chapter 12 - Structural and physical properties of boron nitride nanotubes and their applications in nanocomposites". In Ciofani, Gianni (ed.). Boron Nitride Nanotubes in Nanomedicine. William Andrew Publishing. pp. 183–199. ISBN   9780323389457 . Retrieved June 9, 2024.
  33. USPatent 10934028,Hocker John-Andrew&Park Cheol,"In-situ passivation and insulation layer for a flexible thermal protection system (FTPS)"
  34. Corselli, Andrew (March 3, 2023). "Testing the Thermal Limits of BNNTs". Tech Briefs. Retrieved June 9, 2024.
  35. Kodali, Vamsi; Roberts, Jenny R.; Glassford, Eric; Gill, Ryan; Friend, Sherri; Dunn, Kevin L.; Erdely, Aaron (2022-10-31). "Understanding toxicity associated with boron nitride nanotubes: Review of toxicity studies, exposure assessment at manufacturing facilities, and read-across". Journal of Materials Research. 37 (24): 4620–4638. Bibcode:2022JMatR..37.4620K. doi:10.1557/s43578-022-00796-8. ISSN   2044-5326. PMC   10174278 . PMID   37193295. S2CID   253261443.
  36. Kodali, Vamsi K.; Roberts, Jenny R.; Shoeb, Mohammad; Wolfarth, Michael G.; Bishop, Lindsey; Eye, Tracy; Barger, Mark; Roach, Katherine A.; Friend, Sherri; Schwegler-Berry, Diane; Chen, Bean T.; Stefaniak, Aleksandr; Jordan, Kevin C.; Whitney, Roy R.; Porter, Dale W. (2017-09-14). "Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture". Nanotoxicology. 11 (8): 1040–1058. doi:10.1080/17435390.2017.1390177. ISSN   1743-5390. PMID   29094619. S2CID   3767052.
  37. Kodali, Vamsi; Kim, Keun Su; Roberts, Jenny R.; Bowers, Lauren; Wolfarth, Michael G.; Hubczak, John; Xin, Xing; Eye, Tracy; Friend, Sherri; Stefaniak, Aleksandr B.; Leonard, Stephen S.; Jakubinek, Michael; Erdely, Aaron (2022-11-14). "Influence of Impurities from Manufacturing Process on the Toxicity Profile of Boron Nitride Nanotubes". Small. 18 (52): 2203259. doi:10.1002/smll.202203259. ISSN   1613-6810. PMC   9975644 . PMID   36373669. S2CID   253533121.
  38. Ciofani, Gianni; Danti, Serena; Genchi, Giada Graziana; Mazzolai, Barbara; Mattoli, Virgilio (2013-05-27). "Boron Nitride Nanotubes: Biocompatibility and Potential Spill-Over in Nanomedicine". Small. 9 (9–10): 1672–85. doi:10.1002/smll.201201315. PMID   23423826.
  39. Zhong, J; Dai, L.C. (2012). "Targeting Liposomal Nanomedicine to Cancer Therapy". Technology in Cancer Research & Treatment. 11 (5): 475–481. doi: 10.7785/tcrt.2012.500259 . PMID   22475065.
  40. "Boron Nitride Nanotubes: Properties, Synthesis and Applications". Sigma-Aldrich. Retrieved 2020-03-20.