Napkin ring problem

Last updated
If a hole of height
h
{\displaystyle h}
is drilled straight through the center of a sphere, the volume of the remaining band does not depend on the size of the sphere. For a larger sphere, the band will be thinner but longer. Sphere bands.svg
If a hole of height is drilled straight through the center of a sphere, the volume of the remaining band does not depend on the size of the sphere. For a larger sphere, the band will be thinner but longer.
Animation of a cut napkin ring with constant height Cut Napkin ring problem Animation created with openscad.gif
Animation of a cut napkin ring with constant height

In geometry, the napkin-ring problem involves finding the volume of a "band" of specified height around a sphere, i.e. the part that remains after a hole in the shape of a circular cylinder is drilled through the center of the sphere. It is a counterintuitive fact that this volume does not depend on the original sphere's radius but only on the resulting band's height.

Contents

The problem is so called because after removing a cylinder from the sphere, the remaining band resembles the shape of a napkin ring.

Statement

Suppose that the axis of a right circular cylinder passes through the center of a sphere of radius and that represents the height (defined as the distance in a direction parallel to the axis) of the part of the cylinder that is inside the sphere. The "band" is the part of the sphere that is outside the cylinder. The volume of the band depends on but not on :

As the radius of the sphere shrinks, the diameter of the cylinder must also shrink in order that can remain the same. The band gets thicker, and this would increase its volume. But it also gets shorter in circumference, and this would decrease its volume. The two effects exactly cancel each other out. In the extreme case of the smallest possible sphere, the cylinder vanishes (its radius becomes zero) and the height equals the diameter of the sphere. In this case the volume of the band is the volume of the whole sphere, which matches the formula given above.

An early study of this problem was written by 17th-century Japanese mathematician Seki Kōwa. According to Smith & Mikami (1914) , Seki called this solid an arc-ring, or in Japanese kokan or kokwan. [1]

Proof

Suppose the radius of the sphere is and the length of the cylinder (or the tunnel) is .

By the Pythagorean theorem, the radius of the cylinder is

Finding the measurements of the ring that is the horizontal cross-section. Ring cross-sections.svg
Finding the measurements of the ring that is the horizontal cross-section.

and the radius of the horizontal cross-section of the sphere at height above the "equator" is

The cross-section of the band with the plane at height is the region inside the larger circle of radius given by (2) and outside the smaller circle of radius given by (1). The cross-section's area is therefore the area of the larger circle minus the area of the smaller circle:

The radius R does not appear in the last quantity. Therefore, the area of the horizontal cross-section at height does not depend on , as long as . The volume of the band is

and that does not depend on .

This is an application of Cavalieri's principle: volumes with equal-sized corresponding cross-sections are equal. Indeed, the area of the cross-section is the same as that of the corresponding cross-section of a sphere of radius , which has volume

See also

Related Research Articles

<span class="mw-page-title-main">Sphere</span> A set of points in space which are equidistant from the center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Cylindrical coordinate system</span> 3-dimensional coordinate system

A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis (axis L in the image opposite), the direction from the axis relative to a chosen reference direction (axis A), and the distance from a chosen reference plane perpendicular to the axis (plane containing the purple section). The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point.

The Method of Mechanical Theorems, also referred to as The Method, is one of the major surviving works of the ancient Greek polymath Archimedes. The Method takes the form of a letter from Archimedes to Eratosthenes, the chief librarian at the Library of Alexandria, and contains the first attested explicit use of indivisibles. The work was originally thought to be lost, but in 1906 was rediscovered in the celebrated Archimedes Palimpsest. The palimpsest includes Archimedes' account of the "mechanical method", so called because it relies on the center of weights of figures (centroid) and the law of the lever, which were demonstrated by Archimedes in On the Equilibrium of Planes.

<span class="mw-page-title-main">Solid of revolution</span> Type of three-dimensional shape

In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line, which may not intersect the generatrix. The surface created by this revolution and which bounds the solid is the surface of revolution.

<span class="mw-page-title-main">Surface of revolution</span> Surface created by rotating a curve about an axis

A surface of revolution is a surface in Euclidean space created by rotating a curve one full revolution around an axis of rotation . The volume bounded by the surface created by this revolution is the solid of revolution.

<span class="mw-page-title-main">Pappus's centroid theorem</span> Results on the surface areas and volumes of surfaces and solids of revolution

In mathematics, Pappus's centroid theorem is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Cylinder</span> Three-dimensional solid

A cylinder has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.

<span class="mw-page-title-main">Spherical cap</span> Section of a sphere

In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.

<span class="mw-page-title-main">Radius</span> Segment in a circle or sphere from its center to its perimeter or surface and its length

In classical geometry, a radius of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the Latin radius, meaning ray but also the spoke of a chariot wheel. The typical abbreviation and mathematical variable name for radius is R or r. By extension, the diameter D is defined as twice the radius:

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.

<span class="mw-page-title-main">Viviani's curve</span> Figure-eight shaped curve on a sphere

In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.

<span class="mw-page-title-main">Torricelli's law</span> Theorem in fluid dynamics

Torricelli's law, also known as Torricelli's theorem, is a theorem in fluid dynamics relating the speed of fluid flowing from an orifice to the height of fluid above the opening. The law states that the speed of efflux of a fluid through a sharp-edged hole at the bottom of the tank filled to a depth is the same as the speed that a body would acquire in falling freely from a height , i.e. , where is the acceleration due to gravity. This expression comes from equating the kinetic energy gained, , with the potential energy lost, , and solving for . The law was discovered by the Italian scientist Evangelista Torricelli, in 1643. It was later shown to be a particular case of Bernoulli's principle.

<span class="mw-page-title-main">Steinmetz solid</span> Intersection of cylinders

In geometry, a Steinmetz solid is the solid body obtained as the intersection of two or three cylinders of equal radius at right angles. Each of the curves of the intersection of two cylinders is an ellipse.

<span class="mw-page-title-main">Hypercone</span> 4-dimensional figure

In geometry, a hypercone is the figure in the 4-dimensional Euclidean space represented by the equation

<span class="mw-page-title-main">Contact mechanics</span> Study of the deformation of solids that touch each other

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces and frictional stresses acting tangentially between the surfaces. Normal contact mechanics or frictionless contact mechanics focuses on normal stresses caused by applied normal forces and by the adhesion present on surfaces in close contact, even if they are clean and dry. Frictional contact mechanics emphasizes the effect of friction forces.

<span class="mw-page-title-main">Cavalieri's principle</span> Geometry concept

In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows:

<span class="mw-page-title-main">Spherinder</span> Geometric object

In four-dimensional geometry, the spherinder, or spherical cylinder or spherical prism, is a geometric object, defined as the Cartesian product of a 3-ball of radius r1 and a line segment of length 2r2:

References

  1. Smith, David E.; Mikami, Yoshio (2004), A History of Japanese Mathematics, Dover Publications, pp. 121–123, ISBN   0-486-43482-6 .