National Electrical Safety Code

Last updated

The National Electrical Safety Code (NESC) or ANSI Standard C2 is a United States standard of the safe installation, operation, and maintenance of electric power and communication utility systems including power substations, power and communication overhead lines, and power and communication underground lines. It is published by the Institute of Electrical and Electronics Engineers (IEEE). "National Electrical Safety Code" and "NESC" are registered trademarks of the IEEE.

Contents

The NESC should not be confused with the National Electrical Code (NEC), which is published by the National Fire Protection Association (NFPA) and intended to be used for residential, commercial, and industrial building wiring.

Adoption

The NESC is written as a voluntary standard. It is typically adopted as law by individual states or other governmental authorities. To determine the legal status of the NESC, the state public service commission, public utility commission, or other governmental authority should be contacted. Most U.S. states adopt the NESC in some form or fashion. The state of California is an exception and writes its own utility codes, titled General Order 95 (GO95) for overhead lines and General Order 128 (GO128) for underground lines.

Publication

The NESC is written by various sub committees. The organizations represented, subcommittees, and committee members are listed in the front of the code book. The NESC contains the procedure and time schedule for revising the NESC, which are described in the back of the code book. The NESC has an interpretation committee that issues formal interpretations. The process for obtaining a formal interpretation is outlined in the front of the code book. The NESC is currently published on a 5-year cycle. Urgent safety matters that require a change in between code editions are handled through a Tentative Interim Amendment (TIA) process. Original work on the NESC began in 1913.

Structure

The NESC is structured into parts, sections, and rules. There are general sections at the beginning of the book covering the introduction, definitions, references, and grounding. Following the general section are four main parts including: substations rules (Part 1), overhead line rules (Part 2), underground line rules (Part 3), and work rules (Part 4).

Handbooks and other resources

See also

Related Research Articles

<span class="mw-page-title-main">Electric power transmission</span> Bulk movement of electrical energy

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

<span class="mw-page-title-main">Ground (electricity)</span> Reference point in an electrical circuit from which voltages are measured

In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth.

<span class="mw-page-title-main">Electric power distribution</span> Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 33 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

<span class="mw-page-title-main">Power-line communication</span> Data network that uses electrical wiring

Power-line communication (PLC) is the carrying of data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers. The line that does so is known as a power-line carrier.

<span class="mw-page-title-main">Electric power industry</span> Industry that provides the production and delivery of electric energy

The electric power industry covers the generation, transmission, distribution and sale of electric power to the general public and industry. The commercial distribution of electric power started in 1882 when electricity was produced for electric lighting. In the 1880s and 1890s, growing economic and safety concerns lead to the regulation of the industry. What was once an expensive novelty limited to the most densely populated areas, reliable and economical electric power has become an essential aspect for normal operation of all elements of developed economies.

<span class="mw-page-title-main">Substation</span> Part of an electrical transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.

<span class="mw-page-title-main">National Electrical Code</span> Electrical wiring standard

The National Electrical Code (NEC), or NFPA 70, is a regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States. It is part of the National Fire Code series published by the National Fire Protection Association (NFPA), a private trade association. Despite the use of the term "national," it is not a federal law. It is typically adopted by states and municipalities in an effort to standardize their enforcement of safe electrical practices. In some cases, the NEC is amended, altered and may even be rejected in lieu of regional regulations as voted on by local governing bodies.

<span class="mw-page-title-main">Railway electrification</span> Conversion of railways to use electricity for propulsion

Railway electrification is the use of electric power for the propulsion of rail transport. Electric railways use either electric locomotives, electric multiple units or both. Electricity is typically generated in large and relatively efficient generating stations, transmitted to the railway network and distributed to the trains. Some electric railways have their own dedicated generating stations and transmission lines, but most purchase power from an electric utility. The railway usually provides its own distribution lines, switches, and transformers.

Broadband over power lines (BPL) is a method of power-line communication (PLC) that allows relatively high-speed digital data transmission over public electric power distribution wiring. BPL uses higher frequencies, a wider frequency range, and different technologies compared to other forms of power-line communications to provide high-rate communication over longer distances. BPL uses frequencies that are part of the radio spectrum allocated to over-the-air communication services; therefore, the prevention of interference to, and from, these services is a very important factor in designing BPL systems.

<span class="mw-page-title-main">High voltage</span> Electrical potential that is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

<span class="mw-page-title-main">Utility pole</span> Post used by public utilities to support overhead wires and related equipment

A utility pole is a column or post, usually made out of wood or aluminum alloy, used to support overhead power lines and various other public utilities, such as electrical cable, fiber optic cable, and related equipment such as transformers and street lights. It can be referred to as a transmission pole, telephone pole, telecommunication pole, power pole, hydro pole, telegraph pole, or telegraph post, depending on its application. A Stobie pole is a multi-purpose pole made of two steel joists held apart by a slab of concrete in the middle, generally found in South Australia.

<span class="mw-page-title-main">Overhead power line</span> Above-ground structure for bulk transfer and distribution of electricity

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors suspended by towers or poles. Since the surrounding air provides good cooling, insulation along long passages and allows optical inspection, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy.

<span class="mw-page-title-main">Recloser</span> Electricity distribution networks circuit breakers

In electric power distribution, automatic circuit reclosers (ACRs) are a class of switchgear designed for use on overhead electricity distribution networks to detect and interrupt transient faults. Also known as reclosers or autoreclosers, ACRs are essentially rated circuit breakers with integrated current and voltage sensors and a protection relay, optimized for use as a protection asset. Commercial ACRs are governed by the IEC 62271-111/IEEE Std C37.60 and IEC 62271-200 standards. The three major classes of operating maximum voltage are 15.5 kV, 27 kV and 38 kV.

<span class="mw-page-title-main">Lineworker</span> Skilled worker

A lineworker constructs and maintains the electric transmission and distribution facilities that deliver electrical energy to industrial, commercial, and residential establishments. A lineworker installs, services, and emergency repairs electrical lines in the case of lightning, wind, ice storm, or ground disruptions. Whereas those who install and maintain electrical wiring inside buildings are electricians, lineworkers generally work at outdoor installations.

An earthing system or grounding system (US) connects specific parts of an electric power system with the ground, typically the equipments conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary among countries, though most follow the recommendations of the International Electrotechnical Commission (IEC). Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.

<span class="mw-page-title-main">Underground power line</span> Replacement of above-ground power and telecommunications cables with underground ones

An underground power line provides electrical power with underground cables. Compared to overhead power lines, underground lines have lower risk of starting a wildfire and reduce the risk of the electrical supply being interrupted by outages during high winds, thunderstorms or heavy snow or ice storms. An added benefit of undergrounding is the aesthetic quality of the landscape without the powerlines. Undergrounding can increase the capital cost of electric power transmission and distribution but may decrease operating costs over the lifetime of the cables.

American National Standard C2 is the American National Standards Institute (ANSI) standard for the National Electrical Safety Code (NESC), published by the Institute of Electrical and Electronics Engineers (IEEE).

<span class="mw-page-title-main">Electrification of the New York, New Haven and Hartford Railroad</span> First single-phase AC railroad electrification

The New York, New Haven and Hartford Railroad pioneered electrification of main line railroads using high-voltage, alternating current, single-phase overhead catenary. It electrified its mainline between Stamford, Connecticut, and Woodlawn, New York, in 1907 and extended the electrification to New Haven, Connecticut, in 1914. While single-phase AC railroad electrification has become commonplace, the New Haven's system was unprecedented at the time of construction. The significance of this electrification was recognized in 1982 by its designation as a Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers (ASME).

<span class="mw-page-title-main">IEEE Smart Grid</span>

IEEE Smart Grid is an initiative launched by IEEE to help provide expertise and guidance for individuals and organizations involved in the modernization and optimization of the power grid, better known as the "smart grid". IEEE Smart Grid encompasses an array of activities, including development of new smart grid-related standards, best practices, publications, and conferences and educational opportunities.

Dynamic line rating (DLR), also known as real-time thermal rating (RTTR), is an electric power transmission operation philosophy aiming at maximizing load, when environmental conditions allow it, without compromising safety. Research, prototyping and pilot projects were initiated in the 1990s, but the emergence of the "smart grid" stimulated electric utilities, scientists and vendors to develop comprehensive and sustainable solutions.

References