Neamphamide A

Last updated
Neamphamide A
Neamphamide A.svg
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C75H125N21O23/c1-33(2)29-35(5)57(102)38(8)62(106)88-45(31-51(77)100)64(108)86-43(17-15-26-84-74(80)81)58(103)59(104)70(114)91-53(36(6)37(7)61(79)105)66(110)93-55-40(10)119-73(117)49-19-13-14-28-96(49)72(116)47(32-52(78)101)90-69(113)56(60(118-12)41-20-22-42(98)23-21-41)94-65(109)48(24-25-50(76)99)95(11)71(115)46(30-34(3)4)89-63(107)44(18-16-27-85-75(82)83)87-67(111)54(39(9)97)92-68(55)112/h20-23,33-40,43-49,53-60,97-98,102-104H,13-19,24-32H2,1-12H3,(H2,76,99)(H2,77,100)(H2,78,101)(H2,79,105)(H,86,108)(H,87,111)(H,88,106)(H,89,107)(H,90,113)(H,91,114)(H,92,112)(H,93,110)(H,94,109)(H4,80,81,84)(H4,82,83,85)/t35?,36-,37+,38?,39+,40+,43-,44+,45-,46-,47+,48-,49-,53-,54+,55+,56?,57?,58?,59?,60?/m0/s1
    Key: MFLVVHMXLFFREB-OZERTKLCSA-N
  • C[C@@H]1[C@H](C(=O)N[C@@H](C(=O)N[C@@H](C(=O)N[C@H](C(=O)N([C@H](C(=O)NC(C(=O)N[C@@H](C(=O)N2CCCC[C@H]2C(=O)O1)CC(=O)N)C(C3=CC=C(C=C3)O)OC)CCC(=O)N)C)CC(C)C)CCCN=C(N)N)[C@@H](C)O)NC(=O)[C@H]([C@@H](C)[C@@H](C)C(=O)N)NC(=O)C(C([C@H](CCCN=C(N)N)NC(=O)[C@H](CC(=O)N)NC(=O)C(C)C(C(C)CC(C)C)O)O)O
Properties
C75H125N21O23
Molar mass 1688.949 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Neamphamide A is an HIV-inhibitory isolate of the sea sponge Neamphius huxleyi . [1]

Related Research Articles

Spermicide is a contraceptive substance that destroys sperm, inserted vaginally prior to intercourse to prevent pregnancy. As a contraceptive, spermicide may be used alone. However, the pregnancy rate experienced by couples using only spermicide is higher than that of couples using other methods. Usually, spermicides are combined with contraceptive barrier methods such as diaphragms, condoms, cervical caps, and sponges. Combined methods are believed to result in lower pregnancy rates than either method alone.

Contraceptive sponge

The contraceptive sponge combines barrier and spermicidal methods to prevent conception.

<i>Emiliania huxleyi</i> Unicellular algae responsible for the formation of chalk

Emiliania huxleyi is a species of coccolithophore found in almost all ocean ecosystems from the equator to sub-polar regions, and from nutrient rich upwelling zones to nutrient poor oligotrophic waters. It is one of thousands of different photosynthetic plankton that freely drift in the euphotic zone of the ocean, forming the basis of virtually all marine food webs. It is studied for the extensive blooms it forms in nutrient-depleted waters after the reformation of the summer thermocline. Like other coccolithophores, E. huxleyi is a single-celled phytoplankton covered with uniquely ornamented calcite disks called coccoliths. Individual coccoliths are abundant in marine sediments although complete coccospheres are more unusual. In the case of E. huxleyi, not only the shell, but also the soft part of the organism may be recorded in sediments. It produces a group of chemical compounds that are very resistant to decomposition. These chemical compounds, known as alkenones, can be found in marine sediments long after other soft parts of the organisms have decomposed. Alkenones are most commonly used by earth scientists as a means to estimate past sea surface temperatures.

Okadaic acid, C44H68O13, is a toxin produced by several species of dinoflagellates, and is known to accumulate in both marine sponges and shellfish. One of the primary causes of diarrhetic shellfish poisoning, okadaic acid is a potent inhibitor of specific protein phosphatases and is known to have a variety of negative effects on cells. A polyketide, polyether derivative of a C38 fatty acid, okadaic acid and other members of its family have shined light upon many biological processes both with respect to dinoflagellete polyketide synthesis as well as the role of protein phosphatases in cell growth.

The genome and proteins of HIV have been the subject of extensive research since the discovery of the virus in 1983. "In the search for the causative agent, it was initially believed that the virus was a form of the Human T-cell leukemia virus (HTLV), which was known at the time to affect the human immune system and cause certain leukemias. However, researchers at the Pasteur Institute in Paris isolated a previously unknown and genetically distinct retrovirus in patients with AIDS which was later named HIV." Each virion comprises a viral envelope and associated matrix enclosing a capsid, which itself encloses two copies of the single-stranded RNA genome and several enzymes. The discovery of the virus itself occurred two years following the report of the first major cases of AIDS-associated illnesses.

Amprenavir

Amprenavir is a protease inhibitor used to treat HIV infection. It was approved by the Food and Drug Administration on April 15, 1999, for twice-a-day dosing instead of needing to be taken every eight hours. The convenient dosing came at a price, as the dose required is 1,200 mg, delivered in 8 (eight) very large 150 mg gel capsules or 24 (twenty-four) 50 mg gel capsules twice daily.

<i>Coccolithovirus</i> Genus of viruses

Coccolithovirus is a genus of giant double-stranded DNA virus, in the family Phycodnaviridae. Algae, specifically Emiliania huxleyi, a species of coccolithophore, serve as natural hosts. There is currently only one species in this genus: Emiliania huxleyi virus 86.

Cyanovirin-N (CV-N) is a protein produced by the cyanobacterium Nostoc ellipsosporum that displays virucidal activity against several viruses, including human immunodeficiency virus (HIV). The virucidal activity of CV-N is mediated through specific high-affinity interactions with the viral surface envelope glycoproteins gp120 and gp41, as well as to high-mannose oligosaccharides found on the HIV envelope. In addition, CV-N is active against rhinoviruses, human parainfluenza virus, respiratory syncytial virus, and enteric viruses. The virucidal activity of CV-N against influenza virus is directed towards viral haemagglutinin. CV-N has a complex fold composed of a duplication of a tandem repeat of two homologous motifs comprising three-stranded beta-sheet and beta-hairpins.

HLA-C

HLA-C belongs to the MHC class I heavy chain receptors. The C receptor is a heterodimer consisting of a HLA-C mature gene product and β2-microglobulin. The mature C chain is anchored in the membrane. MHC Class I molecules, like HLA-C, are expressed in nearly all cells, and present small peptides to the immune system which surveys for non-self peptides.

A depsipeptide is a peptide in which one or more of its amide, -C(O)NHR-, groups are replaced by the corresponding ester, -C(O)OR, Many depsipeptides have both peptide and ester linkages. They are mainly found in marine and microbial natural products.

LILRB1

Leukocyte immunoglobulin-like receptor subfamily B member 1 is a protein that in humans is encoded by the LILRB1 gene.

The maturation inhibitors are a class of antiviral drugs for the treatment of infection with HIV. They act by interfering with the maturation of the virus. Specifically, drugs in this class disrupt the final step in the processing of the HIV-1 gag protein, the cleavage of its immediate precursor by the enzyme HIV-1 protease. Unlike the class of drugs known as protease inhibitors, maturation inhibitors bind the gag protein, not the protease. This leads to the formation of noninfectious, immature virus particles, incapable of infecting other cells. No other class of drugs shares this mechanism of action, thus maturation inhibitors retain inhibitory activity against HIV infections with resistance.

TUBA8

Tubulin alpha-8 chain is a protein that in humans is encoded by the TUBA8 gene.

<i>Umbilicaria esculenta</i> Species of fungus

Umbilicaria esculenta is a lichen of the genus Umbilicaria that grows on rocks, also known as rock tripe. It can be found in East Asia including in China, Japan, and Korea. It is edible when properly prepared and has been used as a food source and medicine. It is called iwatake in Japanese and seogi or seogi beoseot in Korean. The species name is based on the earlier basionym Gyrophora esculenta.

<i>Lydekkerina</i> Extinct genus of amphibians from the early Triassic

Lydekkerina is an extinct genus of stereospondyl temnospondyl. It is the type genus of the family Lydekkerinidae. Fossils have been collected from Early Triassic deposits in South Africa and Australia. The type species is L. huxleyi, first described in 1889. While most other stereospondyls were semiaquatic, Lydekkerina was exclusively terrestrial.

Ergosterol peroxide Chemical compound

Ergosterol peroxide (5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol) is a steroid derivative. It has been isolated from a variety of fungi, yeast, lichens and sponges, and has been reported to exhibit immunosuppressive, anti-inflammatory, antiviral, trypanocidal and antitumor activities in vitro.

<i>Psalidopus</i> Genus of crustaceans

Psalidopus is a genus of shrimp placed in its own family, Psalidopodidae, and superfamily, Psalidopodoidea. It comprises three species, one in the western Atlantic Ocean, and two in the Indo-Pacific.

John N.A. Hooper is an Australian marine biologist and writer on science. He is the current Head of Biodiversity & Geosciences Programs at the Queensland Museum. His research has included studying the possible medical benefits of marine sponges, including beta blockers for heart disease, and for compounds to combat illnesses like gastro-intestinal disease and cancer. In 2007 he was a member of the Discussion Panel On Marine Genetic Resources for the eighth annual United Nations Informal Consultative Process for Oceans and the Law of the Sea (UNICPOLOS).

CVNH domain

In molecular biology, the CVNH domain is a conserved protein domain. It is found in the sugar-binding antiviral protein cyanovirin-N (CVN) as well as proteins from filamentous ascomycetes and in the fern Ceratopteris richardii.

Papuamide

Papuamides A and B are depsipeptides which appear to protect T cells from HIV. They were isolated from the sponge Theonella, and are part of a larger group of structurally similar depsipeptides—also isolated from sponges—including neamphamide A, callipeltin A, and mirabamides A-D.

References

  1. Oku, N; Gustafson, KR; Cartner, LK; Wilson, JA; Shigematsu, N; Hess, S; Pannell, LK; Boyd, MR; McMahon, JB (2004). "Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi". Journal of Natural Products. 67 (8): 1407–11. doi:10.1021/np040003f. PMID   15332865.