Nebulium

Last updated
Cat's Eye Nebula (NGC 6543) NGC6543.jpg
Cat's Eye Nebula (NGC 6543)
Cat's Eye Nebula (NGC 6543) NGC 6543 "Cat's Eye".png
Cat's Eye Nebula (NGC 6543)

Nebulium was a proposed element found in astronomical observation of a nebula by William Huggins in 1864. The strong green emission lines of the Cat's Eye Nebula, discovered using spectroscopy, led to the postulation that an as yet unknown element was responsible for this emission. In 1927, Ira Sprague Bowen showed that the lines are emitted by doubly ionized oxygen (O2+), and no new element was necessary to explain them.

Contents

History

William Hyde Wollaston in 1802 and Joseph von Fraunhofer in 1814 described the dark lines within the solar spectrum. Later, Gustav Kirchhoff explained the lines by atomic absorption or emission, which allowed the lines to be used for the identification of chemical elements.

In the early days of telescopic astronomy, the word nebula was used to describe any fuzzy patch of light that did not look like a star. Many of these, such as the Andromeda Nebula, had spectra that looked like stellar spectra, and these turned out to be galaxies. Others, such as the Cat's Eye Nebula, had very different spectra. When William Huggins looked at the Cat's Eye, he found no continuous spectrum like that seen in the Sun, but just a few strong emission lines. The two green lines at 495.9  nm and 500.7 nm were the strongest. [1] These lines did not correspond to any known elements on Earth. The fact that helium had been identified by the emission lines in the Sun in 1868, and had then also been found on Earth in 1895, encouraged astronomers to suggest that the lines were due to a new element. The name nebulium (occasionally nebulum or nephelium) was first mentioned by Margaret Lindsay Huggins in a short communication in 1898, although it is stated that her husband occasionally used the term before. [2]

In 1911, John William Nicholson theorized that all known elements consisted of four protoelements, one of which was Nebulium. [3] [4] The development of the periodic table by Dimitri Mendeleev and the determination of the atomic numbers by Henry Moseley in 1913 left nearly no room for a new element. [5] In 1914 French astronomers were able to determine the atomic weight of nebulium. A measured value of 2.74 for the lines near 372 nm and a slightly lower value for the 500.7 nm line seemed to indicate that two elements were responsible for the spectrum. [6]

Ira Sprague Bowen was working on UV spectroscopy and on the calculation of spectra of the light elements of the periodic table when he became aware of the green lines discovered by Huggins. With this knowledge he was able to suggest that the green lines might be forbidden transitions. They were shown as due to doubly ionized oxygen at extremely low density, [7] rather than the hypothetical nebulium. As Henry Norris Russell put it, "Nebulium has vanished into thin air." Nebulae are typically extremely rarefied, much less dense than the hardest vacuums produced on Earth. In these conditions, lines can form which are suppressed at normal densities. These lines are known as forbidden lines, and are the strongest lines in most nebular spectra. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Nebula</span> Body of interstellar clouds

A nebula is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter and eventually become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.

<span class="mw-page-title-main">Planetary nebula</span> Type of emission nebula created by dying red giants

A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.

<span class="mw-page-title-main">Interstellar medium</span> Matter and radiation in the space between the star systems in a galaxy

In astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to pressure forces, and not as a collection of non-interacting particles.

<span class="mw-page-title-main">Ring Nebula</span> Planetary nebula in Lyra

The Ring Nebula is a planetary nebula in the northern constellation of Lyra. Such a nebula is formed when a star, during the last stages of its evolution before becoming a white dwarf, expels a vast luminous envelope of ionized gas into the surrounding interstellar space.

<span class="mw-page-title-main">Emission nebula</span> Nebula formed of ionized gases that emit light of various wavelengths

An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission nebulae are H II regions, in which star formation is taking place and young, massive stars are the source of the ionizing photons; and planetary nebulae, in which a dying star has thrown off its outer layers, with the exposed hot core then ionizing them.

<span class="mw-page-title-main">Orion Nebula</span> Diffuse nebula in the constellation Orion

The Orion Nebula is a diffuse nebula situated in the Milky Way, being south of Orion's Belt in the constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It is one of the brightest nebulae and is visible to the naked eye in the night sky with apparent magnitude 4.0. It is 1,344 ± 20 light-years (412.1 ± 6.1 pc) away and is the closest region of massive star formation to Earth. The M42 nebula is estimated to be 24 light-years across. It has a mass of about 2,000 times that of the Sun. Older texts frequently refer to the Orion Nebula as the Great Nebula in Orion or the Great Orion Nebula.

<span class="mw-page-title-main">H II region</span> Large, low-density interstellar cloud of partially ionized gas

An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic centimetre. The Orion Nebula, now known to be an H II region, was observed in 1610 by Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered.

<span class="mw-page-title-main">Wolf–Rayet star</span> Heterogeneous class of stars with unusual spectra

Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface enhancement of heavy elements, depletion of hydrogen, and strong stellar winds. The surface temperatures of known Wolf–Rayet stars range from 20,000 K to around 210,000 K, hotter than almost all other kinds of stars. They were previously called W-type stars referring to their spectral classification.

<span class="mw-page-title-main">Cat's Eye Nebula</span> Planetary nebula in the constellation Draco

The Cat's Eye Nebula is a planetary nebula in the northern constellation of Draco, discovered by William Herschel on February 15, 1786. It was the first planetary nebula whose spectrum was investigated by the English amateur astronomer William Huggins, demonstrating that planetary nebulae were gaseous and not stellar in nature. Structurally, the object has had high-resolution images by the Hubble Space Telescope revealing knots, jets, bubbles and complex arcs, being illuminated by the central hot planetary nebula nucleus (PNN). It is a well-studied object that has been observed from radio to X-ray wavelengths.

<span class="mw-page-title-main">Astronomical spectroscopy</span> Study of astronomy using spectroscopy to measure the spectrum of electromagnetic radiation

Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei.

The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885.

<span class="mw-page-title-main">William Huggins</span> British astronomer

Sir William Huggins was a British astronomer best known for his pioneering work in astronomical spectroscopy together with his wife, Margaret.

Ira Sprague Bowen was an American physicist and astronomer. In 1927 he discovered that nebulium was not really a chemical element but instead doubly ionized oxygen.

<span class="mw-page-title-main">Egg Nebula</span> Protoplanetary nebula

The Egg Nebula is a bipolar protoplanetary nebula approximately 3,000 light-years away from Earth. Its peculiar properties were first described in 1975 using data from the 11 µm survey obtained with sounding rocket by Air Force Geophysical Laboratory (AFGL) in 1971 to 1974.

<span class="mw-page-title-main">Coronium</span> Purported element in the Suns corona later found to be 13-fold ionized iron

Coronium, also called newtonium, was the name of a suggested chemical element, hypothesised in the 19th century. The name, inspired by the solar corona, was given by Gruenwald in 1887. A new atomic thin green line in the solar corona was then considered to be emitted by a new element unlike anything else seen under laboratory conditions. It was later determined to be emitted by iron (Fe13+), so highly ionized that it was at that time impossible to produce in a laboratory.

Collisional excitation is a process in which the kinetic energy of a collision partner is converted into the internal energy of a reactant species.

<span class="mw-page-title-main">Hydrogen spectral series</span> Important atomic emission spectra

The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts.

<span class="mw-page-title-main">Doubly ionized oxygen</span>

In astronomy and atomic physics, doubly ionized oxygen is the ion O2+ (O III in spectroscopic notation). Its emission forbidden lines in the visible spectrum fall primarily at the wavelength 500.7 nm, and secondarily at 495.9 nm. Before spectra of oxygen ions became known, these lines once led to a spurious identification of the substance as a new chemical element. Concentrated levels of O III are found in diffuse and planetary nebulae. Consequently, narrow band-pass filters that isolate the 500.7 nm and 495.9 nm wavelengths of light, that correspond to green-turquoise-cyan spectral colors, are useful in observing these objects, causing them to appear at higher contrast against the filtered and consequently blacker background of space (and possibly light-polluted terrestrial atmosphere) where the frequencies of [O III] are much less pronounced.

<span class="mw-page-title-main">John William Nicholson</span>

John William Nicholson, FRS was an English mathematician and physicist. Nicholson is noted as the first to create an atomic model that quantized angular momentum as h/2π. Nicholson was also the first to create a nuclear and quantum theory that explains spectral line radiation as electrons descend toward the nucleus, identifying hitherto unknown solar and nebular spectral lines. Niels Bohr quoted him in his 1913 paper of the Bohr model of the atom.

<span class="mw-page-title-main">History of spectroscopy</span>

Modern spectroscopy in the Western world started in the 17th century. New designs in optics, specifically prisms, enabled systematic observations of the solar spectrum. Isaac Newton first applied the word spectrum to describe the rainbow of colors that combine to form white light. During the early 1800s, Joseph von Fraunhofer conducted experiments with dispersive spectrometers that enabled spectroscopy to become a more precise and quantitative scientific technique. Since then, spectroscopy has played and continues to play a significant role in chemistry, physics and astronomy. Fraunhofer observed and measured dark lines in the Sun's spectrum, which now bear his name although several of them were observed earlier by Wollaston.

References

  1. Huggins, William; Miller, William A. (1864). "On the Spectra of some of the Nebulae". Philosophical Transactions of the Royal Society of London . 154: 437–444. Bibcode:1864RSPT..154..437H. doi: 10.1098/rstl.1864.0013 . JSTOR   108876.
  2. Huggins, Margaret L. (1898). ".... Teach me how to name the .... light". Astrophysical Journal . 8: 54. Bibcode:1898ApJ.....8R..54H. doi: 10.1086/140540 .
  3. Nicholson, John William (1911). "A structural theory of the chemical elements". Philosophical Magazine . 22 (132): 864–889. doi:10.1080/14786441208637185.
  4. McCormmach, Russell (1966). "The atomic theory of John William Nicholson". Archive for History of Exact Sciences . 3 (2): 160–184. doi:10.1007/BF00357268. S2CID   120797894.
  5. Heilbron, John L. (1966). "The Work of H. G. J. Moseley". Isis . 57 (3): 336–364. doi:10.1086/350143. JSTOR   228365. S2CID   144765815.
  6. Buisson, Hervé; Fabry, Charles; Bourget, Henry (1914). "An application of interference to the study of the Orion nebula". Astrophysical Journal . 40: 241–258. Bibcode:1914ApJ....40..241B. doi: 10.1086/142119 .
  7. Bowen, Ira Sprague (1927). "The Origin of the Nebulium Spectrum". Nature . 120 (3022): 473. Bibcode:1927Natur.120..473B. doi: 10.1038/120473a0 .
  8. Hirsh, Richard F. (1979). "The Riddle of the Gaseous Nebulae". Isis . 70 (2): 197–212. Bibcode:1979Isis...70..197H. doi:10.1086/352195. JSTOR   230787. S2CID   123234614.