In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellarators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.
Classical transport models a plasma in a magnetic field as a large number of particles traveling in helical paths around a line of force. In typical reactor designs, the lines are roughly parallel, so particles orbiting adjacent lines may collide and scatter. This results in a random walk process which eventually leads to the particles finding themselves outside the magnetic field.
Neoclassical transport adds the effects of the geometry of the fields. In particular, it considers the field inside the tokamak and similar toroidal arrangements, where the field is stronger on the inside curve than the outside simply due to the magnets being closer together in that area. To even out these forces, the field as a whole is twisted into a helix, so that the particles alternately move from the inside to the outside of the reactor.
In this case, as the particle transits from the outside to the inside, it sees an increasing magnetic force. If the particle energy is low, this increasing field may cause the particle to reverse directions, as in a magnetic mirror. The particle now travels in the reverse direction through the reactor, to the outside limit, and then back towards the inside where the same reflection process occurs. This leads to a population of particles bouncing back and forth between two points, tracing out a path that looks like a banana from above, the so-called banana orbits.
Since any particle in the long tail of the Maxwell–Boltzmann distribution is subject to this effect, there is always some natural population of such banana particles. Since these travel in the reverse direction for half of their orbit, their drift behavior is oscillatory in space. Therefore, when the particles collide, their average step size (width of the banana) is much larger than their gyroradius, leading to neoclassical diffusion across the magnetic field.
A consequence of the toroidal geometry to the guiding-center orbits is that some particles can be reflected on the trajectory from the outboard side to the inboard side due to the presence of magnetic field gradients, similar to a magnetic mirror. The reflected particles cannot do a full turn in the poloidal plane and are trapped which follow the banana orbits.
This can be demonstrated by considering tokamak equilibria for low- and large aspect ratio which have nearly circular cross sections, where polar coordinates centered at the magnetic axis can be used with approximately describing the flux surfaces. The magnitude of the total magnetic field can be approximated by the following expression:
where the subscript indicates value at the magnetic axis , is the major radius, is the inverse aspect ratio, and is the magnetic field. The parallel component of the drift-ordered guiding-center orbits in this magnetic field, assuming no electric field, is given by:
where is the particle mass, is the velocity, and is the magnetic moment (first adiabatic invariant). The direction in the subscript indicates parallel or perpendicular to the magnetic filed. is the effective potential reflecting the conservation of kinetic energy .
The parallel trajectory experiences a mirror force where the particle moving into a magnetic field of increasing magnitude can be reflected by this force. If a magnetic field has a minimum along a field line, the particles in this region of weaker field can be trapped. This is indeed true given the form of we use. The particles are reflected (trapped particles) for sufficiently large or complete their poloidal turn (passing particles) otherwise.
To see this in detail, the maximum and minimum of the effective potential can be identified as and . The passing particles have and the trapped particles have . Recognising this and define a constant of motion , we have
The orbit width can be estimated by considering the variation in over an orbit period . Using the conservation of and ,
The orbit widths can then be estimated, which gives
The bounce angle at which becomes zero for the trapped particles is
The bounce time is the time required for a particle to complete its poloidal orbit. This is calculated by
where . The integral can be rewritten as
where and , which is also equivalent to for trapped particles. This can be evaluated using the results from the complete elliptic integral of the first kind
with properties
The bounce time for passing particles is obtained by integrating between
where the bounce time for trapped particle is evaluated by integrating between and taking
The limiting cases are
The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. It treats a gas as composed of numerous particles, too small to see with a microscope, which are constantly in random motion. Their collisions with each other and with the walls of their container are used to explain physical properties of the gas—for example, the relationship between its temperature, pressure, and volume. The particles are now known to be the atoms or molecules of the gas.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.
In particle physics, the Klein–Nishina formula gives the differential cross section of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics. It was first derived in 1928 by Oskar Klein and Yoshio Nishina, constituting one of the first successful applications of the Dirac equation. The formula describes both the Thomson scattering of low energy photons and the Compton scattering of high energy photons, showing that the total cross section and expected deflection angle decrease with increasing photon energy.
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).
In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.
Cylindrical multipole moments are the coefficients in a series expansion of a potential that varies logarithmically with the distance to a source, i.e., as . Such potentials arise in the electric potential of long line charges, and the analogous sources for the magnetic potential and gravitational potential.
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.
In the Standard Model, using quantum field theory it is conventional to use the helicity basis to simplify calculations. In this basis, the spin is quantized along the axis in the direction of motion of the particle.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
In theoretical physics, the composition of two non-collinear Lorentz boosts results in a Lorentz transformation that is not a pure boost but is the composition of a boost and a rotation. This rotation is called Thomas rotation, Thomas–Wigner rotation or Wigner rotation. If a sequence of non-collinear boosts returns an object to its initial velocity, then the sequence of Wigner rotations can combine to produce a net rotation called the Thomas precession.
In mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.
In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".
In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.
In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.
In combustion, Frank-Kamenetskii theory explains the thermal explosion of a homogeneous mixture of reactants, kept inside a closed vessel with constant temperature walls. It is named after a Russian scientist David A. Frank-Kamenetskii, who along with Nikolay Semenov developed the theory in the 1930s.
Nonlinear frictiophoresis is the unidirectional drift of a particle in a medium caused by periodic driving force with zero mean. The effect is possible due to nonlinear dependence of the friction-drag force on the particle's velocity. It was discovered theoretically., and is mainly known as nonlinear electrofrictiophoresis . At first glance, a periodic driving force with zero mean is able to entrain a particle into an oscillating movement without unidirectional drift, because integral momentum provided to the particle by the force is zero. The possibility of unidirectional drift can be recognized if one takes into account that the particle itself loses momentum through transferring it further to the medium it moves in/at. If the friction is nonlinear, then it may so happen that the momentum loss during movement in one direction does not equal to that in the opposite direction and this causes unidirectional drift. For this to happen, the driving force time-dependence must be more complicated than it is in a single sinusoidal harmonic.
ZFK equation, abbreviation for Zeldovich–Frank-Kamenetskii equation, is a reaction–diffusion equation that models premixed flame propagation. The equation is named after Yakov Zeldovich and David A. Frank-Kamenetskii who derived the equation in 1938 and is also known as the Nagumo equation. The equation is analogous to KPP equation except that is contains an exponential behaviour for the reaction term and it differs fundamentally from KPP equation with regards to the propagation velocity of the traveling wave. In non-dimensional form, the equation reads