This article needs additional citations for verification .(January 2021) |
A nested loop join is a naive algorithm that joins two relations by using two nested loops. [1] Join operations are important for database management.
Two relations and are joined as follows:
algorithm nested_loop_join isfor each tuple r in Rdofor each tuple s in Sdoifr and s satisfy the join condition thenyield tuple <r,s>
This algorithm will involve nr*bs+ br block transfers and nr+br seeks, where br and bs are number of blocks in relations R and S respectively, and nr is the number of tuples in relation R.
The algorithm runs in I/Os, where and is the number of tuples contained in and respectively and can easily be generalized to join any number of relations ...
The block nested loop join algorithm [2] is a generalization of the simple nested loops algorithm that takes advantage of additional memory to reduce the number of times that the relation is scanned. It loads large chunks of relation R into main memory. For each chunk, it scans S and evaluates the join condition on all tuple pairs, currently in memory. This reduces the number of times S is scanned to once per chunk.
If the inner relation has an index on the attributes used in the join, then the naive nest loop join can be replaced with an index join.
algorithm index_join isfor each tuple r in Rdofor each tuple s in S in the index lookup doyield tuple <r,s>
The time complexity for this variation improves from
In computer science, merge sort is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the relative order of equal elements is the same in the input and output. Merge sort is a divide-and-conquer algorithm that was invented by John von Neumann in 1945. A detailed description and analysis of bottom-up merge sort appeared in a report by Goldstine and von Neumann as early as 1948.
Merge algorithms are a family of algorithms that take multiple sorted lists as input and produce a single list as output, containing all the elements of the inputs lists in sorted order. These algorithms are used as subroutines in various sorting algorithms, most famously merge sort.
The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.
In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the efficiency of other algorithms that require input data to be in sorted lists. Sorting is also often useful for canonicalizing data and for producing human-readable output.
In database theory, relational algebra is a theory that uses algebraic structures for modeling data, and defining queries on it with a well founded semantics. The theory was introduced by Edgar F. Codd.
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
In computational geometry, the gift wrapping algorithm is an algorithm for computing the convex hull of a given set of points.
A space–time trade-off, also known as time–memory trade-off or the algorithmic space-time continuum in computer science is a case where an algorithm or program trades increased space usage with decreased time. Here, space refers to the data storage consumed in performing a given task, and time refers to the time consumed in performing a given task.
The sort-merge join is a join algorithm and is used in the implementation of a relational database management system.
In computational number theory, the index calculus algorithm is a probabilistic algorithm for computing discrete logarithms. Dedicated to the discrete logarithm in where is a prime, index calculus leads to a family of algorithms adapted to finite fields and to some families of elliptic curves. The algorithm collects relations among the discrete logarithms of small primes, computes them by a linear algebra procedure and finally expresses the desired discrete logarithm with respect to the discrete logarithms of small primes.
The hash join is an example of a join algorithm and is used in the implementation of a relational database management system. All variants of hash join algorithms involve building hash tables from the tuples of one or both of the joined relations, and subsequently probing those tables so that only tuples with the same hash code need to be compared for equality in equijoins.
In computer science, a longest common substring of two or more strings is a longest string that is a substring of all of them. There may be more than one longest common substring. Applications include data deduplication and plagiarism detection.
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions.
Query optimization is a feature of many relational database management systems and other databases such as NoSQL and graph databases. The query optimizer attempts to determine the most efficient way to execute a given query by considering the possible query plans.
In computer science, the prefix sum, cumulative sum, inclusive scan, or simply scan of a sequence of numbers x0, x1, x2, ... is a second sequence of numbers y0, y1, y2, ..., the sums of prefixes of the input sequence:
A block-nested loop (BNL) is an algorithm used to join two relations in a relational database.
Samplesort is a sorting algorithm that is a divide and conquer algorithm often used in parallel processing systems. Conventional divide and conquer sorting algorithms partitions the array into sub-intervals or buckets. The buckets are then sorted individually and then concatenated together. However, if the array is non-uniformly distributed, the performance of these sorting algorithms can be significantly throttled. Samplesort addresses this issue by selecting a sample of size s from the n-element sequence, and determining the range of the buckets by sorting the sample and choosing p−1 < s elements from the result. These elements then divide the array into p approximately equal-sized buckets. Samplesort is described in the 1970 paper, "Samplesort: A Sampling Approach to Minimal Storage Tree Sorting", by W. D. Frazer and A. C. McKellar.
In numerical analysis, pairwise summation, also called cascade summation, is a technique to sum a sequence of finite-precision floating-point numbers that substantially reduces the accumulated round-off error compared to naively accumulating the sum in sequence. Although there are other techniques such as Kahan summation that typically have even smaller round-off errors, pairwise summation is nearly as good while having much lower computational cost—it can be implemented so as to have nearly the same cost as naive summation.
In computer science, a parallel external memory (PEM) model is a cache-aware, external-memory abstract machine. It is the parallel-computing analogy to the single-processor external memory (EM) model. In a similar way, it is the cache-aware analogy to the parallel random-access machine (PRAM). The PEM model consists of a number of processors, together with their respective private caches and a shared main memory.
External memory graph traversal is a type of graph traversal optimized for accessing externally stored memory.