Nevada Bureau of Mines and Geology

Last updated
Mackay School of Mines Building, University of Nevada Mackay School of Mines Building, University of Nevada, Reno, Nevada (3162493646).jpg
Mackay School of Mines Building, University of Nevada

The Nevada Bureau of Mines and Geology (NBMG) is a research and public service unit of the University of Nevada and the State Geological Survey. NBMG is also part of the Mackay School of Earth Sciences and Engineering at the University of Nevada in Reno. Scientists with the NBMG conduct research and publish their findings around topics which include, mineral and energy resources, engineering geology, environmental geology, earthquakes, groundwater, and geologic mapping in Nevada. In addition, the NBMG provides special services in the field of analytical geochemistry and assay standards, mineral and rock identification. The NBMG provides earth-science education and in-service teacher training and continuing education for professional geoscientists, geologic and geotechnical information. [1]

The NBMG operates the State's abandoned mine lands program, to identify, rank the degree of hazard, and secure mine sites that are no longer operating. Since the inception of the program, over 2,400 sites have been secured. It is estimated that some 50,000 sites in Nevada pose varying degrees of physical safety hazard to the public. Field investigations have also yielded information that will be useful in determining the possibility of sites contributing to surface and groundwater contamination, such as acid mine drainage or excessive arsenic. [2]

Mine Hazards

Mines in Nevada have produced millions of dollars from a variety of metals, including gold, silver, copper, iron, lead, tungsten, and zinc. Many mine openings were developed to explore for metals, but were never operating mines.

Arsenic and mercury, are the biggest threats exposing potentially toxic elements which are often found with deposits of gold and silver, were also produced locally. These toxic elements of local concern include boron, cadmium, selenium, and thallium. There are over 500 historic mining districts throughout the State of Nevada.

The State of Nevada has been studied as a potential location for the disposing of nuclear waste. There is a necessary and respected approach to understanding of problems in the physical sciences and are particularly critical to evaluating the effectiveness of potential nuclear waste isolation sites and strategies facing our Nation. One site in particular is the Yucca Mountain, Nevada. This site studied by the NBMG differs substantially from other potential repositories due to the finding of natural analogues of nuclear material that are currently being studied. [3]

Related Research Articles

Arsenic Chemical element, symbol As and atomic number 33

Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, but only the gray form, which has a metallic appearance, is important to industry.

Environmental geology, like hydrogeology, is an applied science concerned with the practical application of the principles of geology in the solving of environmental problems created by man. It is a multidisciplinary field that is closely related to engineering geology and, to a lesser extent, to environmental geography. Each of these fields involves the study of the interaction of humans with the geologic environment, including the biosphere, the lithosphere, the hydrosphere, and to some extent the atmosphere. In other words, environmental geology is the application of geological information to solve conflicts, minimizing possible adverse environmental degradation or maximizing possible advantageous conditions resulting from the use of natural and modified environment. With an increasing world population and industrialization, the natural environment and resources are under high strain which puts them at the forefront of world issues. Environmental geology is on the rise with these issues as solutions are found by utilizing it.

Yucca Mountain nuclear waste repository Unused deep geological repository facility in Nevada, US

The Yucca Mountain Nuclear Waste Repository, as designated by the Nuclear Waste Policy Act amendments of 1987, is a proposed deep geological repository storage facility within Yucca Mountain for spent nuclear fuel and other high-level radioactive waste in the United States. The site is on federal land adjacent to the Nevada Test Site in Nye County, Nevada, about 80 mi (130 km) northwest of the Las Vegas Valley.

Open-pit mining Surface mining technique

Open-pit mining, also known as open-cast or open-cut mining and in larger contexts mega-mining, is a surface mining technique of extracting rock or minerals from the earth from an open-air pit, sometimes known as a borrow.

Geomicrobiology Intersection of microbiology and geology

Geomicrobiology is the scientific field at the intersection of geology and microbiology and is a major subfield of geobiology. It concerns the role of microbes on geological and geochemical processes and effects of minerals and metals to microbial growth, activity and survival. Such interactions occur in the geosphere, the atmosphere and the hydrosphere. Geomicrobiology studies microorganisms that are driving the Earth's biogeochemical cycles, mediating mineral precipitation and dissolution, and sorbing and concentrating metals. The applications include for example bioremediation, mining, climate change mitigation and public drinking water supplies.

Realgar Sulfide mineral

Realgar ( ree-AL-gar, -⁠gər), also known as "ruby sulphur" or "ruby of arsenic", is an arsenic sulfide mineral with the chemical formula α-As4S4. It is a soft, sectile mineral occurring in monoclinic crystals, or in granular, compact, or powdery form, often in association with the related mineral, orpiment (As2S3). It is orange-red in color, melts at 320 °C, and burns with a bluish flame releasing fumes of arsenic and sulfur. Realgar is soft with a Mohs hardness of 1.5 to 2 and has a specific gravity of 3.5. Its streak is orange colored. It is trimorphous with pararealgar and bonazziite. Its name comes from the Arabic rahj al-ġār (رهج الغار, "powder of the mine"), via Catalan and Medieval Latin, and its earliest record in English is in the 1390s.

Fly ash Residue of coal combustion

Fly ash, flue ash, coal ash, or pulverised fuel ash (in the UK) – plurale tantum: coal combustion residuals (CCRs) – is a coal combustion product that is composed of the particulates (fine particles of burned fuel) that are driven out of coal-fired boilers together with the flue gases. Ash that falls to the bottom of the boiler's combustion chamber (commonly called a firebox) is called bottom ash. In modern coal-fired power plants, fly ash is generally captured by electrostatic precipitators or other particle filtration equipment before the flue gases reach the chimneys. Together with bottom ash removed from the bottom of the boiler, it is known as coal ash. Depending upon the source and composition of the coal being burned, the components of fly ash vary considerably, but all fly ash includes substantial amounts of silicon dioxide (SiO2) (both amorphous and crystalline), aluminium oxide (Al2O3) and calcium oxide (CaO), the main mineral compounds in coal-bearing rock strata.

Nightingale Mountains

The Nightingale Mountains are a north–south trending range located along the western border of Pershing County and extending into the northeastern corner of Washoe County. The range has a length of 32.2 km (20.0 mi) and a width of about 5.5 km (3.4 mi). The highest peak has an elevation of 2,511 m (8,238 ft) which is 1,353 m (4,439 ft) above the elevation of the dry Winnemucca Lake bed at about 1,158 m (3,799 ft).

Deep geological repository Radioactive and hazardous waste long term storage

A deep geological repository is a way of storing hazardous or radioactive waste within a stable geologic environment. It entails a combination of waste form, waste package, engineered seals and geology that is suited to provide a high level of long-term isolation and containment without future maintenance. This will prevent any radioactive dangers. A number of mercury, cyanide and arsenic waste repositories are operating worldwide including Canada and Germany and a number of radioactive waste storages are under construction with the Onkalo in Finland being the most advanced.

Uranium mining Process of extraction of uranium ore from the ground

Uranium mining is the process of extraction of uranium ore from the ground. The worldwide production of uranium in 2019 amounted to 53,656 tonnes. Kazakhstan, Canada, and Australia were the top three uranium producers, respectively, and together account for 68% of world production. Other countries producing more than 1,000 tonnes per year included Namibia, Niger, Russia, Uzbekistan, the United States, and China. Nearly all of the world's mined uranium is used to power nuclear power plants.

Silver mining

Silver mining is the extraction of the precious metal silver from the Earth through excavation.

Uranium mining in the United States Uranium mining industry in U.S.

Uranium mining in the United States produced 173,875 pounds (78.9 tonnes) of U3O8 in 2019, 88% lower than the 2018 production of 1,447,945 pounds (656.8 tonnes) of U3O8 and the lowest US annual production since 1948. The 2019 production represents 0.3% of the anticipated uranium fuel requirements of the US's nuclear power reactors for the year.

Environmental impact of the oil shale industry

Environmental impact of the oil shale industry includes the consideration of issues such as land use, waste management, and water and air pollution caused by the extraction and processing of oil shale. Surface mining of oil shale deposits causes the usual environmental impacts of open-pit mining. In addition, the combustion and thermal processing generate waste material, which must be disposed of, and harmful atmospheric emissions, including carbon dioxide, a major greenhouse gas. Experimental in-situ conversion processes and carbon capture and storage technologies may reduce some of these concerns in future, but may raise others, such as the pollution of groundwater.

In situ leach

In-situ leaching (ISL), also called in-situ recovery (ISR) or solution mining, is a mining process used to recover minerals such as copper and uranium through boreholes drilled into a deposit, in situ. In situ leach works by artificially dissolving minerals occurring naturally in a solid state. For recovery of material occurring naturally in solution, see: Brine mining.

Health and environmental impact of the coal industry

The health and environmental impact of the coal industry includes issues such as land use, waste management, water and air pollution, caused by the coal mining, processing and the use of its products. In addition to atmospheric pollution, coal burning produces hundreds of millions of tons of solid waste products annually, including fly ash, bottom ash, and flue-gas desulfurization sludge, that contain mercury, uranium, thorium, arsenic, and other heavy metals. Coal is the largest contributor to the human-made increase of carbon dioxide in Earth's atmosphere.

Environmental effects of mining Environmental problems from uncontrolled mining

Environmental effects of mining can occur at local, regional, and global scales through direct and indirect mining practices. The effects can result in erosion, sinkholes, loss of biodiversity, or the contamination of soil, groundwater, and surface water by the chemicals emitted from mining processes. These processes also affect the atmosphere from the emissions of carbon which have an effect on the quality of human health and biodiversity. Some mining methods may have such significant environmental and public health effects that mining companies in some countries are required to follow strict environmental and rehabilitation codes to ensure that the mined area returns to its original state.

Allchar deposit

Allchar deposit is a low-temperature hydrothermal gold–arsenic–antimony–thallium deposit in Kavadarci Municipality of North Macedonia. For some time, the thallium-rich part of the deposit was mined. The Crven Dol mine yielded thallium and the ore body still holds estimated amount of 500 t of thallium. The mineral lorandite from this ore deposit can be used to determine the solar neutrino flux.

Hidalgoite

Hidalgoite, PbAl3(AsO4)(SO4)(OH)4, is a rare member of the beudantite group and is usually classified as part of the alunite family. It was named after the place where it was first discovered, the Zimapán mining district, Hidalgo, Mexico. At Hidalgo where it was initially discovered, it was found as dense white masses in alternating dikes of quartz latite and quartz monzonite alongside other secondary minerals such as sphalerite, arsenopyrite, cerussite and trace amounts of angelsite and alamosite, it was then rediscovered at other locations such as Australia where it occurs on oxidized shear zones above greywacke shales especially on the anticline prospects of the area, and on fine grained quartz-spessartine rocks in Broken Hill, Australia. Hidalgoite specimens are usually associated with copper minerals, clay minerals, iron oxides and polymetallic sulfides in occurrence.

Groundwater pollution Pollution that occurs when pollutants are released to the ground and seep down into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Pollution can occur from on-site sanitation systems, landfills, effluent from wastewater treatment plants, leaking sewers, petrol filling stations or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

Geological engineering

Geological engineering is a discipline of engineering concerned with the application of geological science and engineering principles to fields such as civil engineering, mining, environmental engineering, and forestry, among others. The work of geological engineers often directs or supports the work of other engineering disciplines such as assessing the suitability of locations for civil engineering, environmental engineering, mining operations, and oil and gas projects by conducting geological, geoenvironmental, geophysical, and geotechnical studies. They are involved with impact studies for facilities and operations that affect surface and subsurface environments. The engineering design input and other recommendations made by geological engineers on these projects will often have a large impact on construction and operations. Geological engineers plan, design, and implement geotechnical, geological, geophysical, hydrogeological, and environmental data acquisition. This ranges from manual ground-based methods to deep drilling, to geochemical sampling, to advanced geophysical techniques and satellite surveying. Geological engineers are also concerned with the analysis of past and future ground behaviour, mapping at all scales, and ground characterization programs for specific engineering requirements. These analyses lead geological engineers to make recommendations and prepare reports which could have major effects on the foundations of construction, mining, and civil engineering projects. Some examples of projects include rock excavation, building foundation consolidation, pressure grouting, hydraulic channel erosion control, slope and fill stabilization, landslide risk assessment, groundwater monitoring, and assessment and remediation of contamination. In addition, geological engineers are included on design teams that develop solutions to surface hazards, groundwater remediation, underground and surface excavation projects, and resource management. Like mining engineers, geological engineers also conduct resource exploration campaigns, mine evaluation and feasibility assessments, and contribute to the ongoing efficiency, sustainability, and safety of active mining projects

References

  1. Price, Jonathan (1995-12-29), Water Quality at Inactive and Abandoned Mines in Nevada, University of Nevada, CiteSeerX   10.1.1.212.8807
  2. Quad, Jack (1984-12-14), Reconnaissance Geochemical Assessment of Mineral Resources in Elko County Nevada, University of Nevada Reno, CiteSeerX   10.1.1.214.1890
  3. Castor, Stephen, Volcanic Rock Hosted Deposits in Northern Nevada, University of Nevada Reno, CiteSeerX   10.1.1.214.2835