NhaA family

Last updated
Na+/H+ antiporter 1
1zcd opm.png
Identifiers
SymbolNa_H_antiport_1
Pfam PF06965
InterPro IPR004670
TCDB 2.A.36
OPM superfamily 106
OPM protein 1zcd
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1zcd A:4-380, 4CZ8

Na+/H+ antiporter A (NhaA) family (TC# 2.A.33) contains a number of bacterial sodium-proton antiporter (SPAP) proteins. These are integral membrane proteins that catalyse the exchange of H+ for Na+ in a manner that is highly pH dependent. Homologues have been sequenced from a number of bacteria and archaea. Prokaryotes possess multiple paralogues. A representative list of the proteins that belong to the NhaA family can be found in the Transporter Classification Database.

Contents

Structure

Proteins of the NhaA family are of 300-700 amino acyl residues in length. NhaA of E. coli is a homeodimer, each subunit consisting of a bundle of 12 tilted transmembrane α-helices (TMSs). [1] [2] [3] [4] [5]

Molecular dynamics simulations of NhaA enabled proposal of an atomically detailed model of antiporter function. [6] Three conserved aspartate residues are key to this proposed mechanism: Asp164 (D164) is the Na+-binding site, D163 controls the alternating accessibility of this binding site to the cytoplasm or periplasm, and D133 is crucial for pH regulation. [6] [7] [8]

Function

Na+-H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic membrane and many intracellular membranes. They are essential for Na+, pH, and volume homeostasis, which are processes crucial for cell viability. [8] [9] The E. coli protein probably functions in the regulation of the internal pH when the external pH is alkaline, and the protein effectively functions as a pH sensor. [7] It also uses the H+ gradient to expel Na+ from the cell. Its activity is highly pH dependent. [3] [10]

The generalized transport reaction catalyzed by NhaA is: [6] [11]

Na+ (in) + 2H+ (out) ⇌ Na+ (out) + 2H+ (in).

See also

Related Research Articles

<span class="mw-page-title-main">Respiratory complex I</span> Protein complex involved in cellular respiration

Respiratory complex I, EC 7.1.1.2 is the first large protein complex of the respiratory chains of many organisms from bacteria to humans. It catalyzes the transfer of electrons from NADH to coenzyme Q10 (CoQ10) and translocates protons across the inner mitochondrial membrane in eukaryotes or the plasma membrane of bacteria.

<span class="mw-page-title-main">Antiporter</span> Class of transmembrane transporter protein

An antiporter is an integral membrane protein that uses secondary active transport to move two or more molecules in opposite directions across a phospholipid membrane. It is a type of cotransporter, which means that uses the energetically favorable movement of one molecule down its electrochemical gradient to power the energetically unfavorable movement of another molecule up its electrochemical gradient. This is in contrast to symporters, which are another type of cotransporter that moves two or more ions in the same direction, and primary active transport, which is directly powered by ATP.

<span class="mw-page-title-main">Efflux pump</span> Protein complexes that move compounds, generally toxic, out of bacterial cells

An efflux pump is an active transporter in cells that moves out unwanted material. Efflux pumps are an important component in bacteria in their ability to remove antibiotics. The efflux could also be the movement of heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals, bacterial metabolites and neurotransmitters. All microorganisms, with a few exceptions, have highly conserved DNA sequences in their genome that encode efflux pumps. Efflux pumps actively move substances out of a microorganism, in a process known as active efflux, which is a vital part of xenobiotic metabolism. This active efflux mechanism is responsible for various types of resistance to bacterial pathogens within bacterial species - the most concerning being antibiotic resistance because microorganisms can have adapted efflux pumps to divert toxins out of the cytoplasm and into extracellular media.

<span class="mw-page-title-main">Sodium–hydrogen antiporter</span>

The sodium–hydrogen antiporter or sodium–proton exchanger (Na+/H+ exchanger or NHX) is a membrane protein that transports Na+ into the cell, and H+ out of the cell (antiport).

<span class="mw-page-title-main">Major facilitator superfamily</span>

The major facilitator superfamily (MFS) is a superfamily of membrane transport proteins that facilitate movement of small solutes across cell membranes in response to chemiosmotic gradients.

<span class="mw-page-title-main">Multidrug and toxin extrusion protein 1</span> Protein-coding gene in the species Homo sapiens

Multidrug and toxin extrusion protein 1 (MATE1), also known as solute carrier family 47 member 1, is a protein that in humans is encoded by the SLC47A1 gene. SLC47A1 belongs to the MATE family of transporters that are found in bacteria, archaea and eukaryotes.

<span class="mw-page-title-main">Multidrug and toxin extrusion protein 2</span> Protein-coding gene in the species Homo sapiens

Multidrug and toxin extrusion protein 2 is a protein which in humans is encoded by the SLC47A2 gene.

Multi-antimicrobial extrusion protein (MATE) also known as multidrug and toxin extrusion or multidrug and toxic compound extrusion is a family of proteins which function as drug/sodium or proton antiporters.

<span class="mw-page-title-main">Sodium-solute symporter</span> Group of transport proteins

Members of the Solute:Sodium Symporter (SSS) Family (TC# 2.A.21) catalyze solute:Na+ symport. The SSS family is within the APC Superfamily. The solutes transported may be sugars, amino acids, organo cations such as choline, nucleosides, inositols, vitamins, urea or anions, depending on the system. Members of the SSS family have been identified in bacteria, archaea and eukaryotes. Almost all functionally well-characterized members normally catalyze solute uptake via Na+ symport.

Howard Ronald Kaback was an American biochemist, known for Kabackosomes, the cell-free membrane transport vesicles. He was the brother of Michael M. Kaback, pediatrician and human geneticist, who developed a screening program to detect and prevent Tay–Sachs disease, a rare and fatal genetic disorder most common in Ashkenazi Jews.

<span class="mw-page-title-main">SLC9B2</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 9, subfamily B, member 2 is a protein that in humans is encoded by the SLC9B2 gene.

The amino acid-polyamine-organocation (APC) superfamily is the second largest superfamily of secondary carrier proteins currently known, and it contains several Solute carriers. Originally, the APC superfamily consisted of subfamilies under the transporter classification number. This superfamily has since been expanded to include eighteen different families.

<span class="mw-page-title-main">ZnuABC</span> Class of transport proteins

ZnuABC is a high-affinity transporter specialized for transporting zinc ions as part of a system for metal ion homeostasis in bacteria. The complex is a member of the ATP-binding cassette (ABC) transporter protein family. The transporter contains three protein components:

The ion transporter (IT) superfamily is a superfamily of secondary carriers that transport charged substrates.

The NhaB family belongs to the ion transporter (IT) superfamily. A representative list of proteins belonging to the NhaB family can be found in the Transporter Classification Database.

The NhaC family belongs to the Ion Transporter (IT) Superfamily. A representative list of proteins belonging to the NhaC family can be found in the Transporter Classification Database.

The NhaE family belongs to the Ion Transporter (IT) Superfamily, which has an end. A representative list of proteins belonging to the NhaE family can be found in the Transporter Classification Database.

The Monovalent Cation:Proton Antiporter-2 (CPA2) Family is a moderately large family of transporters belonging to the CPA superfamily. Members of the CPA2 family have been found in bacteria, archaea and eukaryotes. The proteins of the CPA2 family consist of between 333 and 900 amino acyl residues and exhibit 10-14 transmembrane α-helical spanners (TMSs).

The Monovalent Cation (K+ or Na+):Proton Antiporter-3 (CPA3) Family (TC# 2.A.63) is a member of the Na+ transporting Mrp superfamily. The CPA3 family consists of bacterial multicomponent K+:H+ and Na+:H+ antiporters. The best characterized systems are the PhaABCDEFG system of Sinorhizobium meliloti (TC# 2.A.63.1.1) that functions in pH adaptation and as a K+ efflux system, and the MnhABCDEFG system of Staphylococcus aureus (TC# 2.A.63.1.3) that functions as a Na+ efflux Na+:H+ antiporter.

<span class="mw-page-title-main">Shimon Schuldiner</span>

Shimon Schuldiner is an Israeli biochemist. He has made important contributions to the understanding of proteins that couple the movement of ions and other molecules across membranes. Schuldiner is Mathilda Marks-Kennedy Professor at the Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem. He received a B.Sc. in 1967 and an M.Sc. in 1968 from the Hebrew University of Jerusalem, and a Ph.D. from the Weizmann Institute of Science in Rehovot in 1973.

References

  1. Williams KA, Geldmacher-Kaufer U, Padan E, Schuldiner S, Kühlbrandt W (July 1999). "Projection structure of NhaA, a secondary transporter from Escherichia coli, at 4.0 A resolution". The EMBO Journal. 18 (13): 3558–63. doi:10.1093/emboj/18.13.3558. PMC   1171434 . PMID   10393172.
  2. Williams KA (January 2000). "Three-dimensional structure of the ion-coupled transport protein NhaA". Nature. 403 (6765): 112–5. Bibcode:2000Natur.403..112W. doi:10.1038/47534. PMID   10638764. S2CID   427512.
  3. 1 2 Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (June 2005). "Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH". Nature. 435 (7046): 1197–202. Bibcode:2005Natur.435.1197H. doi:10.1038/nature03692. PMID   15988517. S2CID   4372674.
  4. Olkhova E, Hunte C, Screpanti E, Padan E, Michel H (February 2006). "Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications". Proceedings of the National Academy of Sciences of the United States of America. 103 (8): 2629–34. Bibcode:2006PNAS..103.2629O. doi: 10.1073/pnas.0510914103 . PMC   1413810 . PMID   16477015.
  5. Screpanti E, Padan E, Rimon A, Michel H, Hunte C (September 2006). "Crucial steps in the structure determination of the Na+/H+ antiporter NhaA in its native conformation". Journal of Molecular Biology. 362 (2): 192–202. doi:10.1016/j.jmb.2006.07.019. PMID   16919297.
  6. 1 2 3 Arkin IT, Xu H, Jensen MØ, Arbely E, Bennett ER, Bowers KJ, Chow E, Dror RO, Eastwood MP, Flitman-Tene R, Gregersen BA, Klepeis JL, Kolossváry I, Shan Y, Shaw DE (August 2007). "Mechanism of Na+/H+ antiporting". Science. 317 (5839): 799–803. Bibcode:2007Sci...317..799A. doi:10.1126/science.1142824. PMID   17690293. S2CID   30745070.
  7. 1 2 Gerchman Y, Olami Y, Rimon A, Taglicht D, Schuldiner S, Padan E (February 1993). "Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli". Proceedings of the National Academy of Sciences of the United States of America. 90 (4): 1212–6. Bibcode:1993PNAS...90.1212G. doi: 10.1073/pnas.90.4.1212 . PMC   45842 . PMID   8381959.
  8. 1 2 Padan E (September 2008). "The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter". Trends in Biochemical Sciences. 33 (9): 435–43. doi:10.1016/j.tibs.2008.06.007. PMID   18707888.
  9. Radchenko MV, Waditee R, Oshimi S, Fukuhara M, Takabe T, Nakamura T (January 2006). "Cloning, functional expression and primary characterization of Vibrio parahaemolyticus K+/H+ antiporter genes in Escherichia coli". Molecular Microbiology. 59 (2): 651–63. doi: 10.1111/j.1365-2958.2005.04966.x . PMID   16390457. S2CID   22001614.
  10. Diab M, Rimon A, Tzubery T, Padan E (October 2011). "Helix VIII of NhaA Na(+)/H(+) antiporter participates in the periplasmic cation passage and pH regulation of the antiporter". Journal of Molecular Biology. 413 (3): 604–14. doi:10.1016/j.jmb.2011.08.046. PMID   21907722.
  11. "2.A.33 The NhaA Na+:H+Antiporter (NhaA) Family". Transporter Classification Database. Retrieved 2016-03-14.

Further reading

As of this edit, this article uses content from "2.A.33 The NhaA Na+:H+Antiporter (NhaA) Family" , which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.