Nial Tanvir

Last updated
Nial Tanvir
Alma mater Durham University (BSc, PhD)
Awards Herschel Medal (2019)
Scientific career
Fields Cosmology
Institutions Leicester University
Thesis Resolved stars in external galaxies  (1992)
Doctoral advisor Dick Fong

Nial Rahil Tanvir (born 1965) is a British astronomer at the University of Leicester. His research specialisms are the Extragalactic distance scale, Galaxy evolution and Gamma ray bursts. Tanvir has featured in various TV programs, including The Sky at Night hosted by Sir Patrick Moore, and Horizon

Contents

Tanvir studied Maths and Physics at Durham University ( St Aidan's College ), graduating in 1986. [1] He was awarded a PhD from the same institution in Cosmology in 1992. He subsequently held a postdoctoral position at Durham before joining the Cambridge University Institute of Astronomy and later the University of Hertfordshire. He was appointed Professor of Astrophysics at the University of Leicester in 2006. [2] [3]

Tanvir headed the international team that discovered the infrared afterglow of GRB 090423 [4] [5] (detected 2009 April 23), the most distant source in the Universe recorded up to that date.

In 2013 he led a team that discovered so-called kilonova emission accompanying GRB 130603B, which provided the first direct evidence that short-duration gamma-ray bursts are created by merging compact sources, either two neutron-stars or a neutron-star and black-hole. [6] [7] He subsequently made the co-discovery of the kilonova AT2017gfo, [8] the counterpart of the first binary neutron star merger that was also detected by its gravitational wave emission, GW170817.

Honours and awards

In 2002 he was a member of the research group which won the European Union Descartes Prize for their pioneering work on gamma-ray bursts. He was awarded the Herschel Medal of the Royal Astronomical Society in 2019. [9]

Related Research Articles

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (M), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, described by NASA as "the most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths.

<span class="mw-page-title-main">Superluminous supernova</span> Supernova at least ten times more luminous than a standard supernova

A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.

<span class="mw-page-title-main">GRB 970228</span> Gamma-ray burst detected on 28 Feb 1997, the first for which an afterglow was observed

GRB 970228 was the first gamma-ray burst (GRB) for which an afterglow was observed. It was detected on 28 February 1997 at 02:58 UTC. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow, but until this event, GRBs had only been observed in highly luminous bursts of high-energy gamma rays ; this resulted in large positional uncertainties which left their nature very unclear.

The eSTAR project was a multi-agent system that aimed to implement a heterogeneous network of robotic telescopes for automated observing, and ground-based follow-up to transient events. The project is a joint collaboration between the Astrophysics Group of the University of Exeter and the Astrophysics Research Institute at Liverpool John Moores University. The project was led by Alasdair Allan and Tim Naylor at the University of Exeter, and Iain Steele at Liverpool John Moores University. The eSTAR Project was affiliated with the RoboNet Consortium, and the global Heterogeneous Telescope Networks Consortium.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

<span class="mw-page-title-main">GRB 970508</span> Gamma-ray burst detected on May 8, 1997

GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.

<span class="mw-page-title-main">GRB 090423</span> Gamma-ray burst detected in 2009

GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009, at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, making it one of the most distant objects detected at that time with a spectroscopic redshift.

<span class="mw-page-title-main">GRB 110328A</span> Gamma-ray burst event in the constellation Draco

Swift J164449.3+573451, initially referred to as GRB 110328A, and sometimes abbreviated to Sw J1644+57, was a tidal disruption event, the destruction of a star by a supermassive black hole. It was first detected by the Swift Gamma-Ray Burst Mission on March 28, 2011. The event occurred in the center of a small galaxy in the Draco constellation, about 3.8 billion light-years away.

<span class="mw-page-title-main">GRB 090429B</span> Gamma-ray burst in constellation Canes Venatici

GRB 090429B was a gamma-ray burst observed on 29 April 2009 by the Burst Alert Telescope aboard the Swift satellite. The burst triggered a standard burst-response observation sequence, which started 106 seconds after the burst. The X-ray telescope aboard the satellite identified an uncatalogued fading source. No optical or UV counterpart was seen in the UV–optical telescope. Around 2.5 hours after the burst trigger, a series of observations was carried out by the Gemini North telescope, which detected a bright object in the infrared part of the spectrum. No evidence of a host galaxy was found either by Gemini North or by the Hubble Space Telescope. Though this burst was detected in 2009, it was not until May 2011 that its distance estimate of 13.14 billion light-years was announced. With 90% likelihood, the burst had a photometric redshift greater than z = 9.06, which would make it the most distant GRB known, although the error bar on this estimate is large, providing a lower limit of z > 7.

<span class="mw-page-title-main">GRB 101225A</span> Gamma-ray burst event of December 25, 2010

GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.

<span class="mw-page-title-main">Neutron star merger</span> Type of stellar collision

A neutron star merger is the stellar collision of neutron stars.

<span class="mw-page-title-main">GRB 130427A</span>

GRB 130427A was a record-setting gamma-ray burst, discovered starting on April 27, 2013. This GRB was associated to SN 2013cq, of which the appearance of optical signal was predicted on May 2, 2013 and detected on May 13, 2013. The Fermi space observatory detected a gamma-ray with an energy of at least 94 billion electron volts. It was simultaneously detected by the Burst Alert Telescope aboard the Swift telescope and was the brightest burst Swift had ever detected. It was one of the five closest GRBs, at about 3.6 billion light-years away, and was comparatively long-lasting.

Fermi's Large Area Telescope (LAT) recorded one gamma ray with an energy of at least 94 billion electron volts (GeV), or some 35 billion times the energy of visible light, and about three times greater than the LAT's previous record. The GeV emission from the burst lasted for hours, and it remained detectable by the LAT for the better part of a day, setting a new record for the longest gamma-ray emission from a GRB.

<span class="mw-page-title-main">Kilonova</span> Neutron star merger

A kilonova is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge. These mergers are thought to produce gamma-ray bursts and emit bright electromagnetic radiation, called "kilonovae", due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process. The measured high sphericity of the kilonova AT2017gfo at early epochs was deduced from the blackbody nature of its spectrum.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova which is believed to result from an extreme core-collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release so much of gamma rays they usually appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It is the first GW observation that has been confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW 170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

<span class="mw-page-title-main">NGC 4993</span> Galaxy in the constellation of Hydra

NGC 4993 is a lenticular galaxy located about 140 million light-years away in the constellation Hydra. It was discovered on 26 March 1789 by William Herschel and is a member of the NGC 4993 Group.

<span class="mw-page-title-main">Fast blue optical transient</span> Astronomical observation

In astronomy, a fast blue optical transient (FBOT), or more specifically, luminous fast blue optical transient (LFBOT), is an explosive transient event similar to supernovae and gamma-ray bursts with high optical luminosity, rapid evolution, and predominantly blue emission. The origins of such explosions are currently unclear, with events occurring at not more than 0.1% of the typical core-collapse supernova rate. This class of transients initially emerged from large sky surveys at cosmological distances, yet in recent years a small number have been discovered in the local Universe, most notably AT 2018cow.

<span class="mw-page-title-main">GRB 200522A</span> An extremely rare and bright kilanova

GRB 200522A is a large kilonova in the Constellation Pisces. It was first observed in May 2020 by the Hubble Space Telescope. It is the result of the largest neutron star explosion ever recorded, and was bright enough to be visible by Hubble 5.4 billion light years away.

References

  1. "Results of Final Examinations June 1986". Durham University Gazette 1985/86. IV (Combined Series): 99. 1986. Retrieved 29 January 2021.
  2. "Prof Nial Tanvir–"There's gold in them thar stars."" (PDF). The Derby and District Astronomical Society. Retrieved 25 August 2020.
  3. "RAS Awards: Nial Tanvir". Royal Astronomical Society . Retrieved 29 January 2021.
  4. Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; Cavanagh, B.; de Ugarte Postigo, A.; Dopita, M. A.; Fatkhullin, T. A.; Fruchter, A. S.; Foley, R. J.; Gorosabel, J.; Kennea, J.; Kerr, T.; Klose, S.; Krimm, H. A.; Komarova, V. N.; Kulkarni, S. R.; Moskvitin, A. S.; Mundell, C. G.; Naylor, T.; Page, K.; Penprase, B. E.; Perri, M.; Podsiadlowski, P.; Roth, K.; Rutledge, R. E.; Sakamoto, T.; Schady, P.; Schmidt, B. P.; Soderberg, A. M.; Sollerman, J.; Stephens, A. W.; Stratta, G.; Ukwatta, T. N.; Watson, D.; Westra, E.; Wold, T.; Wolf, C. (2009). "A gamma-ray burst at a redshift of z~8.2". Nature. 461 (7268): 1254–7. arXiv: 0906.1577 . Bibcode:2009Natur.461.1254T. doi:10.1038/nature08459. PMID   19865165. S2CID   205218350.
  5. "The Most Distant Object Yet Discovered in the Universe". www.eso.org.
  6. Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). "A 'kilonova' associated with the short-duration gamma-ray burst GRB 130603B". Nature. 500 (7464): 547–9. arXiv: 1306.4971 . Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID   23912055. S2CID   205235329.
  7. "News Releases". HubbleSite.org.
  8. Tanvir, N. R.; Levan, A. J.; González-Fernández, C.; Korobkin, O.; Mandel, I.; Rosswog, S.; Hjorth, J.; D’Avanzo, P.; Fruchter, A. S.; Fryer, C. L.; Kangas, T.; Milvang-Jensen, B.; Rosetti, S.; Steeghs, D.; Wollaeger, R. T.; Cano, Z.; Copperwheat, C. M.; Covino, S.; D’Elia, V.; de Ugarte Postigo, A.; Evans, P. A.; Even, W. P.; Fairhurst, S.; Jaimes, R. Figuera; Fontes, C. J.; Fujii, Y. I.; Fynbo, J. P. U.; Gompertz, B. P.; Greiner, J.; Hodosan, G.; Irwin, M. J.; Jakobsson, P.; Jørgensen, U. G.; Kann, D. A.; Lyman, J. D.; Malesani, D.; McMahon, R. G.; Melandri, A.; O’Brien, P. T.; Osborne, J. P.; Palazzi, E.; Perley, D. A.; Pian, E.; Piranomonte, S.; Rabus, M.; Rol, E.; Rowlinson, A.; Schulze, S.; Sutton, P.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema, K.; Wijers, R. A. M. J. (16 October 2017). "The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars". The Astrophysical Journal. 848 (2): L27. arXiv: 1710.05455 . doi: 10.3847/2041-8213/aa90b6 .
  9. "Herschel Medal Winners" (PDF). RAS. Retrieved 25 August 2020.