Nilpotent orbit

Last updated

In mathematics, nilpotent orbits are generalizations of nilpotent matrices that play an important role in representation theory of real and complex semisimple Lie groups and semisimple Lie algebras.

Contents

Definition

An element X of a semisimple Lie algebra g is called nilpotent if its adjoint endomorphism

ad X: g  g,   ad X(Y) = [X,Y]

is nilpotent, that is, (ad X)n = 0 for large enough n. Equivalently, X is nilpotent if its characteristic polynomial pad X(t) is equal to tdim g.

A semisimple Lie group or algebraic group G acts on its Lie algebra via the adjoint representation, and the property of being nilpotent is invariant under this action. A nilpotent orbit is an orbit of the adjoint action such that any (equivalently, all) of its elements is (are) nilpotent.

Examples

Nilpotent matrices with complex entries form the main motivating case for the general theory, corresponding to the complex general linear group. From the Jordan normal form of matrices we know that each nilpotent matrix is conjugate to a unique matrix with Jordan blocks of sizes where is a partition of n. Thus in the case n=2 there are two nilpotent orbits, the zero orbit consisting of the zero matrix and corresponding to the partition (1,1) and the principal orbit consisting of all non-zero matrices A with zero trace and determinant,

with

corresponding to the partition (2). Geometrically, this orbit is a two-dimensional complex quadratic cone in four-dimensional vector space of matrices minus its apex.

The complex special linear group is a subgroup of the general linear group with the same nilpotent orbits. However, if we replace the complex special linear group with the real special linear group, new nilpotent orbits may arise. In particular, for n=2 there are now 3 nilpotent orbits: the zero orbit and two real half-cones (without the apex), corresponding to positive and negative values of in the parametrization above.

Properties

Poset structure

Nilpotent orbits form a partially ordered set: given two nilpotent orbits, O1 is less than or equal to O2 if O1 is contained in the Zariski closure of O2. This poset has a unique minimal element, zero orbit, and unique maximal element, the regular nilpotent orbit, but in general, it is not a graded poset. If the ground field is algebraically closed then the zero orbit is covered by a unique orbit, called the minimal orbit, and the regular orbit covers a unique orbit, called the subregular orbit.

In the case of the special linear group SLn, the nilpotent orbits are parametrized by the partitions of n. By a theorem of Gerstenhaber, the ordering of the orbits corresponds to the dominance order on the partitions of n. Moreover, if G is an isometry group of a bilinear form, i.e. an orthogonal or symplectic subgroup of SLn, then its nilpotent orbits are parametrized by partitions of n satisfying a certain parity condition and the corresponding poset structure is induced by the dominance order on all partitions (this is a nontrivial theorem, due to Gerstenhaber and Hesselink).

See also

Related Research Articles

Lie algebra Vector space with a binary operation satisfying the Jacobi identity

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. The vector space together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative.

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

Adjoint representation

In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

Linear algebraic group

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.

Reductive group

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

In mathematics, a Kac–Moody algebra is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting.

Cartan subalgebra Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

Semisimple Lie algebra Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

In mathematics, a maximal compact subgroupK of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.

In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then stabilizes a flag ; "stabilizes" means for each and i.

In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent part. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form. Analogues of the Jordan-Chevalley decomposition exist for elements of linear algebraic groups, Lie algebras, and Lie groups, and the decomposition is an important tool in the study of these objects.

In the theory of Lie algebras, an sl2-triple is a triple of elements of a Lie algebra that satisfy the commutation relations between the standard generators of the special linear Lie algebra sl2. This notion plays an important role in the theory of semisimple Lie algebras, especially in regard to their nilpotent orbits.

In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple. Equivalently, a Lie algebra is toral if it contains no nonzero nilpotent elements. Over an algebraically closed field, every toral Lie algebra is abelian; thus, its elements are simultaneously diagonalizable.

In mathematics, a regular element of a Lie algebra or Lie group is an element whose centralizer has dimension as small as possible. For example, in a complex semisimple Lie algebra, an element is regular if its centralizer in has dimension equal to the rank of , which in turn equals the dimension of some Cartan subalgebra . An element a Lie group is regular if its centralizer has dimension equal to the rank of .

Complexification (Lie group) universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

This is a glossary of representation theory in mathematics.

Representation theory of semisimple Lie algebras

In mathematics, the representation theory of semisimple Lie algebras is one of crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.

References