Nitroreductase

Last updated
Nitroreductase
Identifiers
SymbolNitroreductase
Pfam PF00881
InterPro IPR000415
CDD cd02062
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB PDB: 1bkj PDB: 1ds7 PDB: 1f5v PDB: 1icr PDB: 1icu PDB: 1icv PDB: 1idt PDB: 1kqb PDB: 1kqc PDB: 1kqd

Nitroreductases are a family of evolutionarily related proteins involved in the reduction of nitrogen-containing compounds, including those containing the nitro functional group. Members of this family utilise flavin mononucleotide as a cofactor and are often found to be homodimers. [1] [2]

Contents

Members of this family include oxygen-insensitive NAD(P)H nitroreductase (flavin mononucleotide-dependent nitroreductase) (6,7-dihydropteridine reductase) (EC 1.5.1.34) and NADH dehydrogenase (EC 1.6.99.3). A number of these proteins are described as oxidoreductases. They are primarily found in bacterial lineages though a number of eukaryotic homologs have been identified: C. elegans P34273 , D. melanogaster Q8T3Q0 , Q9VTE7 , mouse Q9DCX8 and human O75989 . This protein is not found in photosynthetic eukaryotes. The sequences containing this entry in photosynthetic organisms are possible false positives.[ citation needed ]

The nitroreductase of Enterobacter cloacae was identified by Bryant and Deluca [3] in a strain isolated from a munitions facility, on the basis of its ability to metabolize TNT (trinitrotoluene). Since then many homologues have been identified and the family is now known to include members in diverse organisms, that catalize diverse reactions. The iodotyrosine deiodenase of mammals is a dehalogenase, the BluB of Sinorhizobium meliloti cannibalizes the bound flavin mononucleotideto furnish a critical intermediate in vitamin B12 biosynthesis.

Crystal structures of the E. cloacae and E. coli enzymes have been published with a variety of substrates and analogues bound.

An example of a potential cold-active enzyme for prodrug therapy was described using a cold-active nitroreductase, Ssap-NtrB [4] (Çelik and Yetis, 2012). Despite Ssap-NtrB derived from a mesophilic bacterium, it showed optimal activity at 20°C against cancer prodrugs. Authors comment that the cold-activity of this novel enzyme will be useful for therapies in combination with crymotherapy, exposing the target tissue to low temperatures in order to trigger the enzyme activity to activate the drug only where is required. Moreover, the enzyme could also be used for bioremediation of compounds of explosive and volatile nature in regions where high activity at low temperatures is needed.

Subfamilies

Human proteins containing this domain

Iodotyrosine deiodinase (IYD)

Related Research Articles

An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. Many of the enzymes in the electron transport chain are embedded within the membrane.

<span class="mw-page-title-main">Respiratory complex I</span> Protein complex involved in cellular respiration

Respiratory complex I, EC 7.1.1.2 is the first large protein complex of the respiratory chains of many organisms from bacteria to humans. It catalyzes the transfer of electrons from NADH to coenzyme Q10 (CoQ10) and translocates protons across the inner mitochondrial membrane in eukaryotes or the plasma membrane of bacteria.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide</span> Chemical compound which is reduced and oxidized

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

<span class="mw-page-title-main">Flavin adenine dinucleotide</span> Redox-active coenzyme

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.

<span class="mw-page-title-main">Flavin mononucleotide</span> Chemical compound

Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as a cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH), and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the 'conventional' photo receptors as the signaling state and not an E/Z isomerization.

<span class="mw-page-title-main">Flavoprotein</span> Protein family

Flavoproteins are proteins that contain a nucleic acid derivative of riboflavin. These proteins are involved in a wide array of biological processes, including removal of radicals contributing to oxidative stress, photosynthesis, and DNA repair. The flavoproteins are some of the most-studied families of enzymes.

Any enzyme system that includes cytochrome P450 protein or domain can be called a P450-containing system.

<span class="mw-page-title-main">Nitrate reductase</span> Class of enzymes

Nitrate reductases are molybdoenzymes that reduce nitrate to nitrite. This reaction is critical for the production of protein in most crop plants, as nitrate is the predominant source of nitrogen in fertilized soils.

<span class="mw-page-title-main">D-xylulose reductase</span>

In enzymology, a D-xylulose reductase (EC 1.1.1.9) is an enzyme that is classified as an Oxidoreductase (EC 1) specifically acting on the CH-OH group of donors (EC 1.1.1) that uses NAD+ or NADP+ as an acceptor (EC 1.1.1.9). This enzyme participates in pentose and glucuronate interconversions; a set of metabolic pathways that involve converting pentose sugars and glucuronate into other compounds.

In enzymology, a ferric-chelate reductase (EC 1.16.1.7) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NADH peroxidase</span>

In enzymology, a NADH peroxidase (EC 1.11.1.1) is an enzyme that catalyzes the chemical reaction

Flavin reductase a class of enzymes. There are a variety of flavin reductases, which bind free flavins and through hydrogen bonding, catalyze the reduction of these molecules to a reduced flavin. Riboflavin, or vitamin B, and flavin mononucleotide are two of the most well known flavins in the body and are used in a variety of processes which include metabolism of fat and ketones and the reduction of methemoglobin in erythrocytes. Flavin reductases are similar and often confused for ferric reductases because of their similar catalytic mechanism and structures.

In enzymology, an FMN reductase (EC 1.5.1.29) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Pyrroline-5-carboxylate reductase</span>

In enzymology, a pyrroline-5-carboxylate reductase (EC 1.5.1.2) is an enzyme that catalyzes the chemical reaction

Deiodinase (monodeiodinase) is a peroxidase enzyme that is involved in the activation or deactivation of thyroid hormones.

FAD reductase (NADH) (EC 1.5.1.37, NADH-FAD reductase, NADH-dependent FAD reductase) is an enzyme with systematic name FADH2:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

FMN reductase (NAD(P)H) (EC 1.5.1.39, FRG) is an enzyme with systematic name FMNH2:NAD(P)+ oxidoreductase. This enzyme catalyses the following chemical reaction

Riboflavin reductase (NAD(P)H) (EC 1.5.1.41, NAD(P)H-FMN reductase, Fre) is an enzyme with systematic name riboflavin:NAD(P)+ oxidoreductase. This enzyme catalyses the following chemical reaction

FMN reductase (NADH) (EC 1.5.1.42, NADH-FMN reductase) is an enzyme with systematic name FMNH2:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

References

  1. Hecht HJ, Erdmann H, Park HJ, Sprinzl M, Schmid RD (December 1995). "Crystal structure of NADH oxidase from Thermus thermophilus". Nat. Struct. Biol. 2 (12): 1109–14. doi:10.1038/nsb1295-1109. PMID   8846223. S2CID   8384273.
  2. de Oliveira IM, Henriques JA, Bonatto D (April 2007). "In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins". Biochem. Biophys. Res. Commun. 355 (4): 919–25. doi:10.1016/j.bbrc.2007.02.049. PMID   17331467.
  3. Bryant, C.; DeLuca, M. (1991-03-05). "Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae". Journal of Biological Chemistry. 266 (7): 4119–4125. ISSN   0021-9258. PMID   1999405.
  4. Çelik, Ayhan; Yetiş, Gülden (2012-06-01). "An unusually cold active nitroreductase for prodrug activations". Bioorganic & Medicinal Chemistry. 20 (11): 3540–3550. doi:10.1016/j.bmc.2012.04.004. PMID   22546205.
This article incorporates text from the public domain Pfam and InterPro: IPR000415