Noisy data

Last updated

Noisy data are data that is corrupted, distorted, or has a low signal-to-noise ratio. Improper procedures (or improperly-documented procedures) to subtract out the noise in data can lead to a false sense of accuracy or false conclusions.

Noisy data are data with a large amount of additional meaningless information in it called noise. [1] This includes data corruption and the term is often used as a synonym for corrupt data. [1] It also includes any data that a user system cannot understand and interpret correctly. Many systems, for example, cannot use unstructured text. Noisy data can adversely affect the results of any data analysis and skew conclusions if not handled properly. Statistical analysis is sometimes used to weed the noise out of noisy data. [1]

Sources of noise

In this example of an outlier and filtering, point t2 is an outlier. The smooth transition to and from the outlier is from filtering, and is also not valid data, but more noise. Presenting filtered results (the smoothed transitions) as actual measurements can lead to false conclusions. Contextual Outlier.png
In this example of an outlier and filtering, point t2 is an outlier. The smooth transition to and from the outlier is from filtering, and is also not valid data, but more noise. Presenting filtered results (the smoothed transitions) as actual measurements can lead to false conclusions.
This type of filter (a moving average) shifts the data to the right. The moving average price at a given time is usually much different than the actual price at that time. Moving Average Types comparison - Simple and Exponential.png
This type of filter (a moving average) shifts the data to the right. The moving average price at a given time is usually much different than the actual price at that time.

Differences in real-world measured data from the true values come about from by multiple factors affecting the measurement. [2]

Random noise is often a large component of the noise in data. [3] Random noise in a signal is measured as the signal-to-noise ratio. Random noise contains almost equal amounts of a wide range of frequencies, and is also called white noise (as colors of light combine to make white). Random noise is an unavoidable problem. It affects the data collection and data preparation processes, where errors commonly occur. Noise has two main sources: errors introduced by measurement tools and random errors introduced by processing or by experts when the data is gathered. [4]

Improper filtering can add noise if the filtered signal is treated as if it were a directly measured signal. As an example, Convolution-type digital filters such a moving average can have side effects such as lags or truncation of peaks. Differentiating digital filters amplifies random noise in the original data.

Outlier data are data that appear to not belong in the data set. It can be caused by human error such as transposing numerals, mislabeling, programming bugs, etc. If actual outliers are not removed from the data set, they corrupt the results to a small or large degree depending on circumstances. If valid data is identified as an outlier and is mistakenly removed, that also corrupts results.

Fraud: Individuals may deliberately skew data to influence the results toward a desired conclusion. Data that looks good with few outliers reflects well on the individual collecting it, and so there may be incentive to remove more data as outliers or make the data look smoother than it is.

Related Research Articles

Observational error is the difference between a measured value of a quantity and its true value. In statistics, an error is not necessarily a "mistake". Variability is an inherent part of the results of measurements and of the measurement process.

<span class="mw-page-title-main">Statistics</span> Study of the collection, analysis, interpretation, and presentation of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

<span class="mw-page-title-main">Signal processing</span> Analysing, modifying and creating signals

Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, images, potential fields, seismic signals, altimetry processing, and scientific measurements. Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, subjective video quality and to also detect or pinpoint components of interest in a measured signal.

<span class="mw-page-title-main">Analog-to-digital converter</span> System that converts an analog signal into a digital signal

In electronics, an analog-to-digital converter is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.

<span class="mw-page-title-main">Outlier</span> Observation far apart from others in statistics and data science

In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to a variability in the measurement, an indication of novel data, or it may be the result of experimental error; the latter are sometimes excluded from the data set. An outlier can be an indication of exciting possibility, but can also cause serious problems in statistical analyses.

<span class="mw-page-title-main">Deconvolution</span> Reconstruction of a filtered signal

In mathematics, deconvolution is the operation inverse to convolution. Both operations are used in signal processing and image processing. For example, it may be possible to recover the original signal after a filter (convolution) by using a deconvolution method with a certain degree of accuracy. Due to the measurement error of the recorded signal or image, it can be demonstrated that the worse the SNR, the worse the reversing of a filter will be; hence, inverting a filter is not always a good solution as the error amplifies. Deconvolution offers a solution to this problem.

An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit.

Statistical parametric mapping (SPM) is a statistical technique for examining differences in brain activity recorded during functional neuroimaging experiments. It was created by Karl Friston. It may alternatively refer to software created by the Wellcome Department of Imaging Neuroscience at University College London to carry out such analyses.

<span class="mw-page-title-main">Random sample consensus</span> Statistical method

Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at SRI International in 1981. They used RANSAC to solve the Location Determination Problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.

A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition. Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with built in or PC software and numerous algorithms to provide readings or Irradiance (W/cm2), Illuminance, Radiance (W/sr), Luminance (cd), Flux, Chromaticity, Color Temperature, Peak and Dominant Wavelength. Some more complex spectrometer software packages also allow calculation of PAR μmol/m2/s, Metamerism, and candela calculations based on distance and include features like 2- and 20-degree observer, baseline overlay comparisons, transmission and reflectance.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

The limit of detection is the lowest signal, or the lowest corresponding quantity to be determined from the signal, that can be observed with a sufficient degree of confidence or statistical significance. However, the exact threshold used to decide when a signal significantly emerges above the continuously fluctuating background noise remains arbitrary and is a matter of policy and often of debate among scientists, statisticians and regulators depending on the stakes in different fields.

<span class="mw-page-title-main">Noise (electronics)</span> Random fluctuation in an electrical signal

In electronics, noise is an unwanted disturbance in an electrical signal.

Audio noise measurement is a process carried out to assess the quality of audio equipment, such as the kind used in recording studios, broadcast engineering, and in-home high fidelity.

<span class="mw-page-title-main">ADSL</span> DSL service where downstream bandwidth exceeds upstream bandwidth

Asymmetric digital subscriber line (ADSL) is a type of digital subscriber line (DSL) technology, a data communications technology that enables faster data transmission over copper telephone lines than a conventional voiceband modem can provide. ADSL differs from the less common symmetric digital subscriber line (SDSL). In ADSL, bandwidth and bit rate are said to be asymmetric, meaning greater toward the customer premises (downstream) than the reverse (upstream). Providers usually market ADSL as an Internet access service primarily for downloading content from the Internet, but not for serving content accessed by others.

Industrial process data validation and reconciliation, or more briefly, process data reconciliation (PDR), is a technology that uses process information and mathematical methods in order to automatically ensure data validation and reconciliation by correcting measurements in industrial processes. The use of PDR allows for extracting accurate and reliable information about the state of industry processes from raw measurement data and produces a single consistent set of data representing the most likely process operation.

<span class="mw-page-title-main">Audio analyzer</span> Test and measurement instrument

An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.

<span class="mw-page-title-main">Audio forensics</span>

Audio forensics is the field of forensic science relating to the acquisition, analysis, and evaluation of sound recordings that may ultimately be presented as admissible evidence in a court of law or some other official venue.

References

  1. 1 2 3 "What is noisy data? - Definition from WhatIs.com".
  2. "Noisy Data in Data Mining - Soft Computing and Intelligent Information Systems". sci2s.ugr.es.
  3. R.Y. Wang, V.C. Storey, C.P. Firth, A Framework for Analysis of Data Quality Research, IEEE Transactions on Knowledge and Data Engineering 7 (1995) 623-640 doi: 10.1109/69.404034)
  4. X. Zhu, X. Wu, Class Noise vs. Attribute Noise: A Quantitative Study, Artificial Intelligence Review 22 (2004) 177-210 doi: 10.1007/s10462-004-0751-8