Non-linear effects

Last updated

In enantioselective synthesis, a non-linear effect refers to a process in which the enantiopurity of the catalyst (or the chiral auxiliary) does not correlate linearly with the enantiopurity of the product produced. [1] [2] This deviation from linearity is described as the non-linear effect, NLE. [3] The linearity can be expressed mathematically, as shown in Equation 1. Stereoselection (i.e. the eeproduct) that is higher or lower than the enantiomeric excess of the catalyst (eecatalyst, relative to the equation) is considered non-routine behavior.

Contents

For an ideal asymmetric reaction, the eeproduct may be described as the product of eemax multiplied by the eecatalyst. This is not the case for reactions exhibiting NLE's. [4]

Wynberg and Feringa in 1976 observed a different chemical behavior in the reaction of enantiopure and racemic substrate in a coupling reaction of phenols. [5] These heterochiral complexes influence the effective stereoinduction of a scalemic catalyst. Additional sources of non-linear effects include autocatalysis, the process in which the reaction catalyzes itself. [6] General definitions and mathematical models are key to understanding non-linear effects and their application to specific chemical reactions. In the past two decades, the study of non-linear effects has shown to elucidate reaction mechanism and guide in synthetic applications.

Types of non-linear effects

The relationship between the eeproduct and the eecatalyst in the (+)-NLE, linear, and (-)-NLE scenarios. Non-Linear Effects on Enantioselectivity.svg
The relationship between the eeproduct and the eecatalyst in the (+)-NLE, linear, and (−)-NLE scenarios.

Positive non-linear effect, (+)-NLE

A positive non-linear effect, (+)-NLE, is present in an asymmetric reaction which demonstrates a higher product ee (eeproduct ) than predicted by an ideal linear situation (Figure 1). [4] It is often referred to as asymmetric amplification, a term coined by Oguni and co-workers. [4] An example of a positive non-linear effect is observed in the case of Sharpless epoxidation with the substrate geraniol. [7] In all cases of chemical reactivity exhibiting (+)-NLE, there is an innate tradeoff between overall reaction rate and enantioselectivity. The overall rate is slower and the enantioselectivity is higher relative to a linear behaving reaction.

Negative non-linear effect, (−)-NLE

Referred to as asymmetric depletion, a negative non-linear effect is present when the eeproduct is lower than predicted by an ideal linear situation. [3] In contrast to a (+)-NLE, a (−)-NLE results in a faster overall reaction rate and a decrease in enantioselectivity. Synthetically, a (−)-NLE effect could be beneficial with a reasonable assay for separating product enantiomers and a high output is necessary . An interesting example of a (−)-NLE effect has been reported in asymmetric sulfide oxidations. [8]

Modeling non-linear effects

1n 1986, Henri B. Kagan and coworkers observed a series of known reactions that followed a non-ideal behavior. A correction factor, f, was adapted to Equation 1 to fit the kinetic behavior of reactions with NLEs (Equation 2). [3]

Equation 2: A general mathematical equation that describes non-linear behavior [9]

Unfortunately, Equation 2 is too general to apply to specific chemical reactions. Due to this, Kagan and coworkers also developed simplified mathematical models to describe the behavior of catalysts which lead to non-linear effects. [3] These models involve generic MLn species, based on a metal (M) bound to n number of enantiomeric ligands (L). The type of MLn model varies among asymmetric reactions, based on the goodness of fit with reaction data. With accurate modeling, NLE may elucidate mechanistic details of an enantioselective, catalytic reaction. [8]

ML2 model

General description

The simplest model to describe a non-linear effect, the ML2 model involves a metal system (M) with two chiral ligands, LR and LS. In addition to the catalyzed reaction of interest, the model accounts for a steady state equilibrium between the unbound and bound catalyst complexes. [3] There are three possible catalytic complexes at equilibrium (MLSLR, MLSLS, MLRLR). The two enantiomerically pure complexes ( MLSLS, MLRLR) are referred to as homochiral complexes. [3] The possible heterochiral complex, MLRLS, is often referred to as a meso-complex. [3]

The basic scheme of an ML2 model developed by H. B. Kagan [8]

The equilibrium constant that describes this equilibrium, K, is presumably independent on the catalytic chemical reaction. In Kagan's model, K is determined by the amount of aggregation present in the chemical environment. A K=4 is considered to be the state at which there is a statistical distribution of ligands to each metal complex. [3] In other words, there is no thermodynamic disadvantage or advantage to the formation of heterochiral complexes at K=4. [4]

Obeying the same kinetic rate law, each of the three catalytic complexes catalyze the desired reaction to form product. [8] As enantiomers of each other, the homochiral complexes catalyze the reaction at the same rate, although opposite absolute configuration of the product is induced (i.e. rRR=rSS). The heterochiral complex, however, forms a racemic product at a different rate constant (i.e. rRS). [9]

Mathematical model for the ML2 Model

In order to describe the ML2 model in quantitative parameters, Kagan and coworkers described the following formula:

In the correction factor, Kagan and co-workers introduced two new parameters absent in Equation 1, β and g. [9] In general, these parameters represent the concentration and activity of three catalytic complexes relative to each other. β represents the relative amount of the heterochiral complex (MLRLS) as shown in Equation 3. [3] It is important to recognize that the equilibrium constant K is independent on both β and g. [8] As described by Donna Blackmond at Scripps Research Institute, "the parameter K is an inherent property of the catalyst mixture, independent of the eecatalyst. K is also independent of the catalytic reaction itself, and therefore independent of the parameter g."

Equation 3: The correction factor, β, may be described as z, the heterochiral complex concentration, divided by x and y, the respective concentrations of the complex concentration divided by x and y, the respective concentrations of the homochiral complexes [3]

The parameter g represents the reactivity of the heterochiral complex relative to the homochiral complexes. As shown in Equation 5, this may be described in terms of rate constants. Since the homochiral complexes react at identical rates, g can then be described as the rate constant corresponding to the heterochiral complex divided by the rate constant corresponding to either homochiral complex.

Equation 4: The correction parameter, g, can be described as the rate of product formation with the heterochiral catalyst MLRLS divided by the rate of product formation of the homochiral complex (MLRLR or MLSLS).

Interpretation of the mathematical results of the ML2 Model

  • If β=0 or g=1, the ML2 equation simplifies to the Equation 1. No meso catalyst complex is present or active. Therefore, the simple additive properties should apply to such a scenario to establish a linear relationship between product enantioselectivity and the enantiopurity of the chiral catalyst.
  • If the correction factor is greater than one, the reaction displays an asymmetric amplification, also known as a positive non-linear effect. Under the ML2 model, a (+)-NLE infers a less reactive heterochiral catalyst. In this case, the equilibrium constant K also increases as the correction factor increases. Although the product enantioselectivity is relatively high compared to the enantiopurity of the chiral catalyst, this comes at a cost of the overall reaction rate. In order to achieve an asymmetric amplification, there must be a relatively large concentration of the heterochiral complex. In addition, this heterochiral complex must have a substantially slower rate of reactivity, rRS. Therefore, the reactive catalytic species should decrease in concentration, leading to an overall slower reaction rate.
  • If the correction factor is less than one, the reaction displays an asymmetric depletion, also known as a negative non-linear effect. In this scenario, the heterochiral catalyst is relatively more reactive than the homochiral catalyst complexes. In this case, the (−)-NLE may result in an overall faster although less selective product formation.

iv. Reaction Kinetics with the ML2 Model: Following H.B. Kagan's publication of the ML2 model, Professor Donna Blackmond at Scripps demonstrated how this model could be used to also calculate the overall reaction rates. With these relative reaction rates, Blackmond showed how the ML2 model could be used to formulate kinetic predictions which could then be compared to experimental data. The overall rate equation, Equation 6, is shown below. [8]

In addition to the goodness of fit to the model, kinetic information about the overall reaction may further validate the proposed reaction mechanism. For instance, a positive NLE in the ML2 should result in an overall lower reaction rate. [8] By solving the reaction rate from Equation 6, one can confirm if that is the case.

M*L2 Model

General description

Similar to the ML2 model, this modified system involves chiral ligands binding to a metal center (M) to create a new center of chirality. [4] There are four pairs of enantiomeric chiral complexes in the M*L2 model, as shown in Figure 5.

Figure 5: The equilibrium present in the M*L2. This is very similar to the ML2 model. However, due to the new center of chirality, there are four sets of enantiomers.

In this model, one can make the approximation that the dimeric complexes dissociate irreversibly to the monomeric species. In this case, the same mathematical equations apply to the ML*2 model that applied to the ML2 model.

ML3 model

General description

A higher level of modeling, the ML3 model involves four active catalytic complexes: MLRLRLR, MLSLSLS, MLRLRLS, MLSLSLR. Unlike the ML2 model, where only the two homochiral complexes reacted to form enantiomerically enriched product, all four of the catalytic complexes react enantioselectively. However, the same steady state assumption applies to the equilibrium between unbound and bound catalytic complexes as in the more simple ML2 model. This relationship is shown below in Figure 7.

Figure 7: The equilibrium between the unbound species and the reactive catalytic species in the ML3 model.

Mathematical modeling

Calculating the eeproduct is considerably more challenging than in the simple ML2 model. Each of the two heterochiral catalytic complexes should react at the same rate. The homochiral catalytic complexes, similar to the ML2 case, should also react at the same rate. As such, the correction parameter g is still calculated as the rate of the heterochiral catalytic complex divided by the rate of the homochiral catalytic complex. However, since the heterochiral complexes lead to enantiomerically enriched product, the overall equation for calculating the eeproduct becomes more difficult. In Figure 8., the mathematical formula for calculating enantioselectivity is shown.

Figure 8: The mathematical formula describing an ML3 system. The eeproduct is calculated by multiplying the eemax by the correction factor developed by Kagan and co-workers. [4]

Interpretation of the ML3 Model

In general, interpreting the correction parameter values of g to predict positive and negative non-linear effects is considerably more difficult. In the case where the heterochiral complexes MLRLRLS and MLSLSLR are less reactive than the homochiral complexes MLSLSLS and MLRLRLR, a kinetic behavior similar to the ML2 model is observed (Figure 9). However, a substantially different behavior is observed in the case where the heterochiral complexes are more reactive than the homochiral complexes. In such case, Kagan and collaborators showed that it is possible to have a case “where the enantiomeric excess could take on much larger values for a partially resolved ligand than for an enantiomerically pure ligand”. The authors proposed the term “ hyperpositive nonlinear effect ” to characterize this situation.

Figure 9: When the heterochiral complexes are more selective and reactive than the homochiral complexes. ML3graph2.jpg
Figure 9: When the heterochiral complexes are more selective and reactive than the homochiral complexes.
Figure 10: When the homochiral complexes are more selective and reactive than the heterochiral complexes. ML3graph1.jpg
Figure 10: When the homochiral complexes are more selective and reactive than the heterochiral complexes.

Reservoir Effect

General Description

Often described adjacent or in collaboration with the ML2 model, the reservoir effect describes the scenario in which part of the chiral ligand is allocated to a pool of inactive heterochiral catalytic complexes outside the catalytic cycle. [4] A pool of unreactive heterochiral catalysts, described with an eepool, develops an equilibrium with the catalytically active homochiral complexes, described with an eeeffective. [8] Depending on the concentration of the inactive pool of catalysts, one can calculate the enantiopurity of the active catalyst complexes. The general result of the reservoir effect is an asymmetric amplification, also known as a (+)-NLE. [3]

Origin of the Reservoir Effect

The pool of unreactive catalytic complexes, as described in the reservoir effect, can be the result of several factors. One of these could potentially be an aggregation effect amongst the heterochiral catalytic complexes that takes place prior to the steady state equilibrium. [3]

Early Examples of the Non-Linear Effect

Sharpless Epoxidation of Geraniol

In 1986, Kagan and co-workers were able to demonstrate NLE with the Sharpless epoxidation of (E)-Geraniol (Figure 11). Under Sharpless oxidizing conditions with Ti(O-i-Pr)4/(+)-DET/t-BuOOH, Kagan and coworkers were able to demonstrate that there was a non-linear correlation between the eeproduct and the ee of the chiral catalyst, diethyl tartrate (DET). [3] As one can see from Figure 11, a greater eeproduct than expected was observed. According to the ML2 model, Kagan and coworkers were able to conclude that a less reactive heterochiral DET complex was present. This would therefore explain the asymmetric amplification observed. The NLE data is also consistent with the Sharpless mechanism of asymmetric epoxidation. [10]

Figure 11: The general reaction scheme studied by Kagan and coworkers for the Sharpless epoxidation of geraniol. Sharpless Geraniol reaction.jpg
Figure 11: The general reaction scheme studied by Kagan and coworkers for the Sharpless epoxidation of geraniol.

Asymmetric Sulfide Oxidation

In 1994, Kagan and co-workers reported a NLE in asymmetric sulfide oxidation. The goodness of fit for the reaction data matched the ML4 model. This implied that a dimeric Titanium complexed with 4 DET ligands was the active catalytic species. [3] In this case, the reaction rate would be significantly faster relative to ideal reaction kinetics. The downfall, as is the case in all (−)-NLE scenarios, is that the enantioselectivity was lower than expected. [3] Below, in Figure 12, one can see the concavity of the data points is highly indicative of a (−)-NLE. [1]

Figure 12: A clear indication of a negative non-linear effect in the asymmetric sulfide oxidation reaction. Sulfide.jpg
Figure 12: A clear indication of a negative non-linear effect in the asymmetric sulfide oxidation reaction.

Prebiotic Catalysis and the Non-linear Effect

In pre-biotic chemistry, autocatalytic systems play a significant rule in understanding the origin of chirality in life. [6] An autocatalytic reaction, a reaction in which the product acts as a catalyst for itself, serves as a model for homochirality. The asymmetric Soai reaction is commonly referred to as chemical plausibility for this pre-biotic hypothesis. In this system, an asymmetric amplification is observed during the process of autocatalytic catalysis. Professor Donna Blackmond has studied the NLE of this reaction extensively using Kagan's ML2 model. From this mathematical analysis, Blackmond was able to conclude that a dimeric, homochiral complex was the active catalyst in promoting homochirality for the Soai reaction. [3] [6]

Notes

  1. 1 2 3 Guillaneux, Denis; Zhao, Shu-Hai; Samuel, Odile; Rainford, David; Kagan, Henri B. (October 1994). "Nonlinear Effects in Asymmetric Catalysis". Journal of the American Chemical Society. 116 (21): 9430–9439. doi:10.1021/ja00100a004.
  2. Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B. (5 January 2009). "Nonlinear Effects in Asymmetric Catalysis". Angewandte Chemie International Edition. 48 (3): 456–494. doi:10.1002/anie.200705241. PMID   19115268.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Blackmond, Donna G. (December 1997). "Mathematical Models of Nonlinear Effects in Asymmetric Catalysis: New Insights Based on the Role of Reaction Rate". Journal of the American Chemical Society. 119 (52): 12934–12939. doi:10.1021/ja973049m.
  4. 1 2 3 4 5 6 7 8 9 Girard, Christian; Kagan, Henri B. (16 November 1998). "Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation". Angewandte Chemie International Edition. 37 (21): 2922–2959. doi: 10.1002/(SICI)1521-3773(19981116)37:21<2922::AID-ANIE2922>3.0.CO;2-1 . PMID   29711141.
  5. Wynberg, Hans; Feringa, Ben (January 1976). "Enantiomeric recognition and interactions" (PDF). Tetrahedron. 32 (22): 2831–2834. doi:10.1016/0040-4020(76)80131-7.
  6. 1 2 3 Blackmond, D. G. (5 April 2004). "Asymmetric Catalysis Special Feature Part II: Asymmetric autocatalysis and its implications for the origin of homochirality". Proceedings of the National Academy of Sciences. 101 (16): 5732–5736. Bibcode:2004PNAS..101.5732B. doi: 10.1073/pnas.0308363101 . PMC   395976 . PMID   15067112.
  7. Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B. (April 1986). "Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidations and aldolization reactions". Journal of the American Chemical Society. 108 (9): 2353–2357. doi:10.1021/ja00269a036. PMID   22175583.
  8. 1 2 3 4 5 6 7 8 Blackmond, Donna G. (June 2000). "Kinetic Aspects of Nonlinear Effects in Asymmetric Catalysis". Accounts of Chemical Research. 33 (6): 402–411. doi:10.1021/ar990083s. PMID   10891058.
  9. 1 2 3 Kagan, Henri B. (2001). "Nonlinear Effects in Asymmetric Catalysis: A Personal Account". Synlett. 2001 (Special Issue): 0888–0899. doi: 10.1055/s-2001-14660 .
  10. 1 2 Finn, M. G.; Sharpless, K. Barry (January 1991). "Mechanism of asymmetric epoxidation. 2. Catalyst structure". Journal of the American Chemical Society. 113 (1): 113–126. doi:10.1021/ja00001a019.

Related Research Articles

<span class="mw-page-title-main">Sharpless epoxidation</span> Chemical reaction

The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is tert-butyl hydroperoxide. The method relies on a catalyst formed from titanium tetra(isopropoxide) and diethyl tartrate.

<span class="mw-page-title-main">Enantioselective synthesis</span> Chemical reaction(s) which favor one chiral isomer over another

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts."

Homochirality is a uniformity of chirality, or handedness. Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral. In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer, but some sources discourage this use of the term.

<span class="mw-page-title-main">Corey–Itsuno reduction</span>

The Corey–Itsuno reduction, also known as the Corey–Bakshi–Shibata (CBS) reduction, is a chemical reaction in which a prochiral ketone is enantioselectively reduced to produce the corresponding chiral, non-racemic alcohol. The oxazaborolidine reagent which mediates the enantioselective reduction of ketones was previously developed by the laboratory of Itsuno and thus this transformation may more properly be called the Itsuno-Corey oxazaborolidine reduction.

<span class="mw-page-title-main">Biocatalysis</span> Use of natural catalysts to perform chemical transformations

Biocatalysis refers to the use of living (biological) systems or their parts to speed up (catalyze) chemical reactions. In biocatalytic processes, natural catalysts, such as enzymes, perform chemical transformations on organic compounds. Both enzymes that have been more or less isolated and enzymes still residing inside living cells are employed for this task. Modern biotechnology, specifically directed evolution, has made the production of modified or non-natural enzymes possible. This has enabled the development of enzymes that can catalyze novel small molecule transformations that may be difficult or impossible using classical synthetic organic chemistry. Utilizing natural or modified enzymes to perform organic synthesis is termed chemoenzymatic synthesis; the reactions performed by the enzyme are classified as chemoenzymatic reactions.

The Stetter reaction is a reaction used in organic chemistry to form carbon-carbon bonds through a 1,4-addition reaction utilizing a nucleophilic catalyst. While the related 1,2-addition reaction, the benzoin condensation, was known since the 1830s, the Stetter reaction was not reported until 1973 by Dr. Hermann Stetter. The reaction provides synthetically useful 1,4-dicarbonyl compounds and related derivatives from aldehydes and Michael acceptors. Unlike 1,3-dicarbonyls, which are easily accessed through the Claisen condensation, or 1,5-dicarbonyls, which are commonly made using a Michael reaction, 1,4-dicarbonyls are challenging substrates to synthesize, yet are valuable starting materials for several organic transformations, including the Paal–Knorr synthesis of furans and pyrroles. Traditionally utilized catalysts for the Stetter reaction are thiazolium salts and cyanide anion, but more recent work toward the asymmetric Stetter reaction has found triazolium salts to be effective. The Stetter reaction is an example of umpolung chemistry, as the inherent polarity of the aldehyde is reversed by the addition of the catalyst to the aldehyde, rendering the carbon center nucleophilic rather than electrophilic.

In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. As opposed to chiral resolution, kinetic resolution does not rely on different physical properties of diastereomeric products, but rather on the different chemical properties of the racemic starting materials. The enantiomeric excess (ee) of the unreacted starting material continually rises as more product is formed, reaching 100% just before full completion of the reaction. Kinetic resolution relies upon differences in reactivity between enantiomers or enantiomeric complexes.

<span class="mw-page-title-main">Organocatalysis</span> Method in organic chemistry

In organic chemistry, organocatalysis is a form of catalysis in which the rate of a chemical reaction is increased by an organic catalyst. This "organocatalyst" consists of carbon, hydrogen, sulfur and other nonmetal elements found in organic compounds. Because of their similarity in composition and description, they are often mistaken as a misnomer for enzymes due to their comparable effects on reaction rates and forms of catalysis involved.

Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information to transfer from one molecule to the target, forming the product as a single enantiomer. The chiral information is most commonly contained in a catalyst and, in this case, the information in a single molecule of catalyst may be transferred to many substrate molecules, amplifying the amount of chiral information present. Similar processes occur in nature, where a chiral molecule like an enzyme can catalyse the introduction of a chiral centre to give a product as a single enantiomer, such as amino acids, that a cell needs to function. By imitating this process, chemists can generate many novel synthetic molecules that interact with biological systems in specific ways, leading to new pharmaceutical agents and agrochemicals. The importance of asymmetric hydrogenation in both academia and industry contributed to two of its pioneers — William Standish Knowles and Ryōji Noyori — being collectively awarded one half of the 2001 Nobel Prize in Chemistry.

Chiral Lewis acids (CLAs) are a type of Lewis acid catalyst. These acids affect the chirality of the substrate as they react with it. In such reactions, synthesis favors the formation of a specific enantiomer or diastereomer. The method is an enantioselective asymmetric synthesis reaction. Since they affect chirality, they produce optically active products from optically inactive or mixed starting materials. This type of preferential formation of one enantiomer or diastereomer over the other is formally known as asymmetric induction. In this kind of Lewis acid, the electron-accepting atom is typically a metal, such as indium, zinc, lithium, aluminium, titanium, or boron. The chiral-altering ligands employed for synthesizing these acids often have multiple Lewis basic sites that allow the formation of a ring structure involving the metal atom.

The Juliá–Colonna epoxidation is an asymmetric poly-leucine catalyzed nucleophilic epoxidation of electron deficient olefins in a triphasic system. The reaction was reported by Sebastian Juliá at the Chemical Institute of Sarriá in 1980, with further elaboration by both Juliá and Stefano Colonna.

In organic chemistry, the Baylis–Hillman, Morita–Baylis–Hillman, or MBH reaction is a carbon-carbon bond-forming reaction between an activated alkene and a carbon electrophile in the presence of a nucleophilic catalyst, such as a tertiary amine or phosphine. The product is densely functionalized, joining the alkene at the α-position to a reduced form of the electrophile.

<span class="mw-page-title-main">Soai reaction</span> Chemical reaction

In organic chemistry, the Soai reaction is the alkylation of pyrimidine-5-carbaldehyde with diisopropylzinc. The reaction is autocatalytic and leads to rapidly increasing amounts of the same enantiomer of the product. The product pyrimidyl alcohol is chiral and induces that same chirality in further catalytic cycles. Starting with a low enantiomeric excess ("ee") produces a product with very high enantiomeric excess. The reaction has been studied for clues about the origin of homochirality among certain classes of biomolecules.

In chemistry, reaction progress kinetic analysis (RPKA) is a subset of a broad range of kinetic techniques utilized to determine the rate laws of chemical reactions and to aid in elucidation of reaction mechanisms. While the concepts guiding reaction progress kinetic analysis are not new, the process was formalized by Professor Donna Blackmond in the late 1990s and has since seen increasingly widespread use. Unlike more common pseudo-first-order analysis, in which an overwhelming excess of one or more reagents is used relative to a species of interest, RPKA probes reactions at synthetically relevant conditions Generally, this analysis involves a system in which the concentrations of multiple reactants are changing measurably over the course of the reaction. As the mechanism can vary depending on the relative and absolute concentrations of the species involved, this approach obtains results that are much more representative of reaction behavior under commonly utilized conditions than do traditional tactics. Furthermore, information obtained by observation of the reaction over time may provide insight regarding unexpected behavior such as induction periods, catalyst deactivation, or changes in mechanism.

In chemistry, metal-catalysed hydroboration is a reaction used in organic synthesis. It is one of several examples of homogeneous catalysis.

<span class="mw-page-title-main">Josiphos ligands</span>

A Josiphos ligand is a type of chiral diphosphine which has been modified to be substrate-specific; they are widely used for enantioselective synthesis. They are widely used in asymmetric catalysis.

In organic chemistry, the Keck asymmetric allylation is a chemical reaction that involves the nucleophilic addition of an allyl group to an aldehyde. The catalyst is a chiral complex that contains titanium as a Lewis acid. The chirality of the catalyst induces a stereoselective addition, so the secondary alcohol of the product has a predictable absolute stereochemistry based on the choice of catalyst. This name reaction is named for Gary Keck.

In asymmetric addition of dialkylzinc compounds to aldehydes dialkyl zinc compounds can be used to perform asymmetric additions to aldehydes, generating substituted alcohols as products. Chiral alcohols are prevalent in many natural products, drugs, and other important organic molecules. Dimethyl zinc is often used with an asymmetric amino alcohol, amino thiol, or other ligand to affect enantioselective additions to aldehydes and ketones. One of the first examples of this process, reported by Noyori and colleagues, features the use of the amino alcohol ligand (−)-3-exo-dimethylaminoisobornenol along with dimethylzinc to add a methyl group asymmetrically to benzaldehyde. Many ligands have been developed for binding zinc during addition reactions. TADDOLs (tetraaryl-1,3-dioxolane-4,5-dimethanols), which are derived from chiral tartaric acid, are a class of diol ligands often used to bind titanium, but have been adopted for zinc addition chemistry. These ligands require relatively low catalyst loadings, and can achieve up to 99% ee in dialkylzinc additions to aromatic and aliphatic aldehydes. Martens and colleagues have used azetidine alcohols as ligands for asymmetric zinc additions. The researchers found that when paired with catalytic n-butyllithium, diethylzinc can add to aromatic aldehydes with ee in the range of 94-100%.

Donna Blackmond is an American chemical engineer and the John C. Martin Endowed Chair in Chemistry at Scripps Research in La Jolla, California. Her research focuses on prebiotic chemistry, the origin of biological homochirality, and kinetics and mechanisms of asymmetric catalytic reactions. She is known for her development of Reaction Progress Kinetic Analysis (RPKA), analysis of non-linear effects of catalyst enantiopurity, biological homochirality, and amino acid behavior.

The ketimine Mannich reaction is an asymmetric synthetic technique using differences in starting material to push a Mannich reaction to create an enantiomeric product with steric and electronic effects, through the creation of a ketimine group. Typically, this is done with a reaction with proline or another nitrogen-containing heterocycle, which control chirality with that of the catalyst. This has been theorized to be caused by the restriction of undesired (E)-isomer by preventing the ketone from accessing non-reactive tautomers. Generally, a Mannich reaction is the combination of an amine, a ketone with a β-acidic proton and aldehyde to create a condensed product in a β-addition to the ketone. This occurs through an attack on the ketone with a suitable catalytic-amine unto its electron-starved carbon, from which an imine is created. This then undergoes electrophilic addition with a compound containing an acidic proton. It is theoretically possible for either of the carbonyl-containing molecules to create diastereomers, but with the addition of catalysts which restrict addition as of the enamine creation, it is possible to extract a single product with limited purification steps and in some cases as reported by List et al.; practical one-pot syntheses are possible. The process of selecting a carbonyl-group gives the reaction a direct versus indirect distinction, wherein the latter case represents pre-formed products restricting the reaction's pathway and the other does not. Ketimines selects a reaction group, and circumvent a requirement for indirect pathways.