Null (mathematics)

Last updated
Nullset.svg
Empty set symbol.svg
Empty set symbols

In mathematics, the word null (from German : null[ citation needed ] meaning "zero", which is from Latin : nullus meaning "none") is often associated with the concept of zero or the concept of nothing. [1] [2] It is used in varying context from "having zero members in a set" (e.g., null set) [3] to "having a value of zero" (e.g., null vector). [4]

In a vector space, the null vector is the neutral element of vector addition; depending on the context, a null vector may also be a vector mapped to some null by a function under consideration (such as a quadratic form coming with the vector space, see null vector, a linear mapping given as matrix product or dot product, [4] a seminorm in a Minkowski space, etc.). In set theory, the empty set, that is, the set with zero elements, denoted "{}" or "∅", may also be called null set. [3] [5] In measure theory, a null set is a (possibly nonempty) set with zero measure.

A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element). For example, in linear algebra, the null space of a linear mapping, also known as kernel, is the set of vectors which map to the null vector under that mapping.

In statistics, a null hypothesis is a proposition that no effect or relationship exists between populations and phenomena. It is the hypothesis which is presumed true—unless statistical evidence indicates otherwise. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Automorphism</span> Isomorphism of an object to itself

In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object.

<span class="mw-page-title-main">Dynamical system</span> Mathematical model of the time dependence of a point in space

In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Linear algebra</span> Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

<span class="mw-page-title-main">Vector space</span> Algebraic structure in linear algebra

In mathematics and physics, a vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.

In algebra, the kernel of a homomorphism is generally the inverse image of 0. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.

<span class="mw-page-title-main">Linear subspace</span> In mathematics, vector subspace

In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces.

In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or an object which possesses a simple structure. The noun triviality usually refers to a simple technical aspect of some proof or definition. The origin of the term in mathematical language comes from the medieval trivium curriculum, which distinguishes from the more difficult quadrivium curriculum. The opposite of trivial is nontrivial, which is commonly used to indicate that an example or a solution is not simple, or that a statement or a theorem is not easy to prove.

<span class="mw-page-title-main">Projective space</span> Completion of the usual space with "points at infinity"

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.

In functional analysis, a discipline within mathematics, given a C*-algebra A, the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of A and certain linear functionals on A. The correspondence is shown by an explicit construction of the *-representation from the state. It is named for Israel Gelfand, Mark Naimark, and Irving Segal.

<span class="mw-page-title-main">Map (mathematics)</span> Function, homomorphism, or morphism

In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper.

In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering of the class of objects to which it belongs.

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:

<span class="mw-page-title-main">Functional (mathematics)</span> Types of mappings in mathematics

In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield.

In mathematics, a projection is an idempotent mapping of a set into a subset. In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane : the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency). The shadow of a three-dimensional sphere is a closed disk. Originally, the notion of projection was introduced in Euclidean geometry to denote the projection of the three-dimensional Euclidean space onto a plane in it, like the shadow example. The two main projections of this kind are:

In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : MN is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f."

Algebra is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics.

In mathematics and physics, vector is a term that refers colloquially to some quantities that cannot be expressed by a single number, or to elements of some vector spaces.

This is a glossary of linear algebra.

References

  1. ""null"". The Oxford English Dictionary, Draft Revision March 2004. 2004. Retrieved 2007-04-05.
  2. "Definition of "null" adjective from the Oxford Advanced Learner's Dictionary". Oxford Advanced Learner's Dictionary 9th. 2016. Archived from the original on June 21, 2018. Retrieved 2018-06-21.
  3. 1 2 "What is null set? - Definition from WhatIs.com". WhatIs.com. Retrieved 2019-12-09.
  4. 1 2 Weisstein, Eric W. "Null Vector". mathworld.wolfram.com. Retrieved 2019-12-09.
  5. "Math Symbols: Null Set". www.solving-math-problems.com. Retrieved 2019-12-09.
  6. Helmenstine, Anne Marie. "What Is the Null Hypothesis? Definition and Examples". ThoughtCo. Retrieved 2019-12-09.