Numerical semigroup

Last updated

In mathematics, a numerical semigroup is a special kind of a semigroup. Its underlying set is the set of all nonnegative integers except a finite number and the binary operation is the operation of addition of integers. Also, the integer 0 must be an element of the semigroup. For example, while the set {0, 2, 3, 4, 5, 6, ...} is a numerical semigroup, the set {0, 1, 3, 5, 6, ...} is not because 1 is in the set and 1 + 1 = 2 is not in the set. Numerical semigroups are commutative monoids and are also known as numerical monoids. [1] [2]

Contents

The definition of numerical semigroup is intimately related to the problem of determining nonnegative integers that can be expressed in the form x1n1 + x2n2 + ... + xrnr for a given set {n1, n2, ..., nr} of positive integers and for arbitrary nonnegative integers x1, x2, ..., xr. This problem had been considered by several mathematicians like Frobenius (1849–1917) and Sylvester (1814–1897) at the end of the 19th century. [3] During the second half of the twentieth century, interest in the study of numerical semigroups resurfaced because of their applications in algebraic geometry. [4]

Definition and examples

Definition

Let N be the set of nonnegative integers. A subset S of N is called a numerical semigroup if the following conditions are satisfied.

  1. 0 is an element of S
  2. NS, the complement of S in N, is finite.
  3. If x and y are in S then x + y is also in S.

There is a simple method to construct numerical semigroups. Let A = {n1, n2, ..., nr} be a nonempty set of positive integers. The set of all integers of the form x1n1 + x2n2 + ... + xrnr is the subset of N generated by A and is denoted by A. The following theorem fully characterizes numerical semigroups.

Theorem

Let S be the subsemigroup of N generated by A. Then S is a numerical semigroup if and only if gcd (A) = 1. Moreover, every numerical semigroup arises in this way. [5]

Examples

The following subsets of N are numerical semigroups.

  1. 1 = {0, 1, 2, 3, ...}
  2. 1, 2 = {0, 1, 2, 3, ...}
  3. 2, 3 = {0, 2, 3, 4, 5, 6, ...}
  4. Let a be a positive integer. a, a + 1, a + 2, ... , 2a – 1 = {0, a, a + 1, a + 2, a + 3, ...}.
  5. Let b be an odd integer greater than 1. Then 2, b = {0, 2, 4, . . . , b − 3 , b − 1, b, b + 1, b + 2, b + 3 , ...}.
  6. Well-tempered harmonic semigroup H={0,12,19,24,28,31,34,36,38,40,42,43,45,46,47,48,...} [6]

Embedding dimension, multiplicity

The set A is a set of generators of the numerical semigroup A. A set of generators of a numerical semigroup is a minimal system of generators if none of its proper subsets generates the numerical semigroup. It is known that every numerical semigroup S has a unique minimal system of generators and also that this minimal system of generators is finite. The cardinality of the minimal set of generators is called the embedding dimension of the numerical semigroup S and is denoted by e(S). The smallest member in the minimal system of generators is called the multiplicity of the numerical semigroup S and is denoted by m(S).

Frobenius number and genus

There are several notable numbers associated with a numerical semigroup S.

  1. The set NS is called the set of gaps in S and is denoted by G(S).
  2. The number of elements in the set of gaps G(S) is called the genus of S (or, the degree of singularity of S) and is denoted by g(S).
  3. The greatest element in G(S) is called the Frobenius number of S and is denoted by F(S).
  4. The smallest element of S such that all larger integers are likewise elements of S is called the conductor; it is F(S) + 1.

Examples

Let S = 5, 7, 9 . Then we have:


Numerical semigroups with small Frobenius number or genus

  n  Semigroup S
   with F(S) = n  
Semigroup S
   with g(S) = n  
   1   2, 3    2, 3
   2   3, 4, 5    3, 4, 5
   2, 5
   3   4, 5, 6, 7
   2, 5
   4, 5, 6, 7
   3, 5, 7
   3, 4
   2, 7
   4   5, 6, 7, 8, 9
   3, 5, 7
   5, 6, 7, 8, 9
   4, 6, 7, 9
   3, 7, 8
   4, 5, 7
   4, 5, 6
   3, 5,
   2, 9

Computation of Frobenius number

Numerical semigroups with embedding dimension two

The following general results were known to Sylvester. [7] [ failed verification ] Let a and b be positive integers such that gcd (a, b) = 1. Then

Numerical semigroups with embedding dimension three

There is no known general formula to compute the Frobenius number of numerical semigroups having embedding dimension three or more. No polynomial formula can be found to compute the Frobenius number or genus of a numerical semigroup with embedding dimension three. [8] Every positive integer is the Frobenius number of some numerical semigroup with embedding dimension three. [9]

Rödseth's algorithm

The following algorithm, known as Rödseth's algorithm, [10] [11] can be used to compute the Frobenius number of a numerical semigroup S generated by {a1, a2, a3} where a1 < a2 < a3 and gcd ( a1, a2, a3) = 1. Its worst-case complexity is not as good as Greenberg's algorithm [12] but it is much simpler to describe.

where qi ≥ 2, si ≥ 0 for all i.

Special classes of numerical semigroups

An irreducible numerical semigroup is a numerical semigroup such that it cannot be written as the intersection of two numerical semigroups properly containing it. A numerical semigroup S is irreducible if and only if S is maximal, with respect to set inclusion, in the collection of all numerical semigroups with Frobenius number F(S).

A numerical semigroup S is symmetric if it is irreducible and its Frobenius number F(S) is odd. We say that S is pseudo-symmetric provided that S is irreducible and F(S) is even. Such numerical semigroups have simple characterizations in terms of Frobenius number and genus:

See also

Related Research Articles

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

<span class="mw-page-title-main">Integral domain</span> Commutative ring with no zero divisors other than zero

In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Monoid</span> Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

<span class="mw-page-title-main">Generating set of a group</span> Abstract algebra concept

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination of finitely many elements of the subset and their inverses.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

<span class="mw-page-title-main">Polynomial ring</span> Algebraic structure

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics and computer science, the Krohn–Rhodes theory is an approach to the study of finite semigroups and automata that seeks to decompose them in terms of elementary components. These components correspond to finite aperiodic semigroups and finite simple groups that are combined in a feedback-free manner.

In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A. The free semigroup on A is the subsemigroup of A containing all elements except the empty string. It is usually denoted A+.

In mathematics, a Hurwitz quaternion is a quaternion whose components are either all integers or all half-integers. The set of all Hurwitz quaternions is

In matrix theory, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive components, and also asserts a similar statement for certain classes of nonnegative matrices. This theorem has important applications to probability theory ; to the theory of dynamical systems ; to economics ; to demography ; to social networks ; to Internet search engines (PageRank); and even to ranking of football teams. The first to discuss the ordering of players within tournaments using Perron–Frobenius eigenvectors is Edmund Landau.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

<span class="mw-page-title-main">Coin problem</span> Mathematical problem

The coin problem is a mathematical problem that asks for the largest monetary amount that cannot be obtained using only coins of specified denominations, for example, the largest amount that cannot be obtained using only coins of 3 and 5 units is 7 units. The solution to this problem for a given set of coin denominations is called the Frobenius number of the set. The Frobenius number exists as long as the set of coin denominations has no common divisor greater than 1.

In algebra, a presentation of a monoid is a description of a monoid in terms of a set Σ of generators and a set of relations on the free monoid Σ generated by Σ. The monoid is then presented as the quotient of the free monoid by these relations. This is an analogue of a group presentation in group theory.

The Hilbert basis of a convex cone C is a minimal set of integer vectors such that every integer vector in C is a conical combination of the vectors in the Hilbert basis with integer coefficients.

In mathematics, an automatic semigroup is a finitely generated semigroup equipped with several regular languages over an alphabet representing a generating set. One of these languages determines "canonical forms" for the elements of the semigroup, the other languages determine if two canonical forms represent elements that differ by multiplication by a generator.

In mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five distinct nonisomorphic semigroups having two elements:

In mathematics, a cancellative semigroup is a semigroup having the cancellation property. In intuitive terms, the cancellation property asserts that from an equality of the form a·b = a·c, where · is a binary operation, one can cancel the element a and deduce the equality b = c. In this case the element being cancelled out is appearing as the left factors of a·b and a·c and hence it is a case of the left cancellation property. The right cancellation property can be defined analogously. Prototypical examples of cancellative semigroups are the positive integers under addition or multiplication. Cancellative semigroups are considered to be very close to being groups because cancellability is one of the necessary conditions for a semigroup to be embeddable in a group. Moreover, every finite cancellative semigroup is a group. One of the main problems associated with the study of cancellative semigroups is to determine the necessary and sufficient conditions for embedding a cancellative semigroup in a group.

In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative. That is, given a matrix A and a (column) vector of response variables y, the goal is to find

References

  1. Garcia-Sanchez, P.A. "Numerical semigroups minicourse" . Retrieved 6 April 2011.
  2. Finch, Steven. "Monoids of Natural Numbers" (PDF). INRIA Algorithms Project. Retrieved 7 April 2011.
  3. J.C. Rosales and P.A. Garcia-Sanchez (2009). Numerical Semigroups. Springer. ISBN   978-1-4419-0159-0.
  4. V. Barucci; et al. (1997). "Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains". Memoirs of the Amer. Math. Soc. 598.
  5. García-Sánchez, J.C. Rosales, P.A. (2009). Numerical semigroups (First. ed.). New York: Springer. p. 7. ISBN   978-1-4419-0160-6.
  6. M. Bras-Amorós (2019). "Tempered monoids of real numbers, the golden fractal monoid, and the well-tempered harmonic semigroup". Semigroup Forum . 99 (2): 496–516. arXiv: 1703.01077 . doi:10.1007/s00233-019-10059-4. S2CID   253781462.
  7. J. J. Sylvester (1884). "Mathematical questions with their solutions". Educational Times. 41 (21).
  8. F. Curtis (1990). "On formulas for the Frobenius number of a numerical semigroup". Mathematica Scandinavica . 67 (2): 190–192. doi: 10.7146/math.scand.a-12330 . Retrieved 18 March 2019.
  9. J. C. Rosales; et al. (2004). "Every positive integer is the Frobenius number of a numerical semigroup with three generators". Mathematica Scandinavica . 94 (1): 5–12. doi: 10.7146/math.scand.a-14427 . Retrieved 14 March 2015.
  10. J.L. Ramírez Alfonsín (2005). The Diophantine Frobenius Problem . Oxford University Press. pp.  4–6. ISBN   978-0-19-856820-9.
  11. Ö.J. Rödseth (1978). "On a linear Diophantine problem of Frobenius". J. Reine Angew. Math. 301: 171–178.
  12. Harold Greenberg (1988). "Solution to a linear Diophantine equation for non-negative integers". Journal of Algorithms. 9 (3): 343–353. doi:10.1016/0196-6774(88)90025-9.