Ocean Grazer

Last updated

The Ocean Grazer is a conceptual energy collection platform, projected to house several renewable energy generation modules, including wave energy, solar energy and wind energy. The development of the Ocean Grazer platform has been carried out by the University of Groningen in the Netherlands, [1] since 2014, and now by a spin-out company Ocean Grazer BV. [2]

Contents

The concept of the platform is currently on its version 3.0 [3] centering on the modular design as opposed to the massiveness of the platform, as in the previous concepts. The majority of the harvested energy for all concepts is to be delivered by a wave energy converter that uses the motion of ocean surface waves to generate electrical energy. [4]

The company has also developed the Ocean Battery, which is a modular subsea pumped-storage hydroelectricity system. [2] Unveiled in 2021, the technology can be deployed around offshore wind farms or floating solar, to store excess power generated. [5]

Energy converter operation

The operating principle of the Ocean Grazer energy converter is to store potential energy by creating a hydraulic head, due to the differences in pressure between two reservoirs. All three concepts rely on this principle to function. The hydraulic head is created by circulating internal fluid from the lower to the upper reservoir via a novel hydro-mechanical power take off system, [4] composed of distributed and coupled floaters. Each floater is linked to a separate multi-piston pumping system, consisting of differently sized pistons that regulate the amount of pumped fluid and that can be adapted to the surface wave conditions. [6] Check valve systems are needed to minimize the back flow when the pistons return to their resting position. [4] [7] Lastly, similar to a hydroelectric plant, once enough fluid has been stored in the upper reservoir it can be circulated through a turbine system to generate electrical energy.

Potential

There are advantages in using a device like the Ocean Grazer energy converter, such as:

Challenges

There are also disadvantages in using a device like the Ocean Grazer energy converter, namely:

See also

Related Research Articles

Ocean thermal energy conversion (OTEC) is a renewable energy technology that harnesses the temperature difference between the warm surface waters of the ocean and the cold depths to run a heat engine to produce electricity. It is a unique form of clean energy generation that has the potential to provide a consistent and sustainable source of power. Although it has challenges to overcome, OTEC has the potential to provide a consistent and sustainable source of clean energy, particularly in tropical regions with access to deep ocean water.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Pumped-storage hydroelectricity</span> Electric energy storage system

Pumped-storage hydroelectricity (PSH), or pumped hydroelectric energy storage (PHES), is a type of hydroelectric energy storage used by electric power systems for load balancing. The method stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation. Low-cost surplus off-peak electric power is typically used to run the pumps. During periods of high electrical demand, the stored water is released through turbines to produce electric power.

<span class="mw-page-title-main">Tidal power</span> Technology to convert the energy from tides into useful forms of power

Tidal power or tidal energy is harnessed by converting energy from tides into useful forms of power, mainly electricity using various methods.

<span class="mw-page-title-main">Wave power</span> Transport of energy by wind waves, and the capture of that energy to do useful work

Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, water desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).

<span class="mw-page-title-main">Grid energy storage</span> Large scale electricity supply management

Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher.

Wave Dragon is a floating slack-moored energy converter of the overtopping type, developed by the Danish company Wave Dragon Aps. Wave Dragon is a joint EU research project, including partners from Austria, Denmark, Germany, Ireland, Portugal, Sweden, and the UK. It was the world's first offshore wave energy converter.

<span class="mw-page-title-main">Pelamis Wave Energy Converter</span>

The Pelamis Wave Energy Converter was a technology that used the motion of ocean surface waves to create electricity. The machine was made up of connected sections which flex and bend as waves pass; it is this motion which is used to generate electricity.

The Wave Hub is a floating offshore wind and wave power research project. The project is developed approximately 10 miles (16 km) off Hayle, on the north coast of Cornwall, United Kingdom. The hub was installed on the seabed in September 2010, and is a 'socket' sitting on the seabed for wave energy converters to be plugged into. It will have connections to it from arrays of up to four kinds of wave energy converter. A cable from the hub to main land will take electrical power from the devices to the electric grid. The total capacity of the hub will be 20 MWe. The estimated cost of the project is £28 million.

<span class="mw-page-title-main">Renewable energy in the United Kingdom</span>

Renewable energy in the United Kingdom contributes to production for electricity, heat, and transport.

<span class="mw-page-title-main">CETO</span> Submerged wave power technology

CETO is a wave-energy technology that converts kinetic energy from ocean swell into electrical power and directly desalinates freshwater through reverse osmosis. The technology was developed and tested onshore and offshore in Fremantle, Western Australia. In early 2015 a CETO 5 production installation was commissioned and connected to the grid. As of January 2016 all the electricity generated is being purchased to contribute towards the power requirements of HMAS Stirling naval base at Garden Island, Western Australia. Some of the energy will also be used directly to desalinate water.

<span class="mw-page-title-main">European Marine Energy Centre</span>

The European Marine Energy Centre (EMEC) Ltd. is a UKAS accredited test and research centre focused on wave and tidal power development, based in the Orkney Islands, UK. The centre provides developers with the opportunity to test full-scale grid-connected prototype devices in wave and tidal conditions.

The Oyster was a hydro-electric wave energy device that used the motion of ocean waves to generate electricity. It was made up of a Power Connector Frame (PCF), which is bolted to the seabed, and a Power Capture Unit (PCU). The PCU is a hinged buoyant flap that moves back and forth with movement of the waves. The movement of the flap drives two hydraulic pistons that feed high-pressured water to an onshore hydro-electric turbine, which drives a generator to make electricity. Oyster was stationed at the European Marine Energy Centre (EMEC) at its Billia Croo site in Orkney, Scotland until the company ceased trading in 2015.

<span class="mw-page-title-main">Marine energy</span> Energy stored in the waters of oceans

Marine energy or marine power refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion. Some of this energy can be harnessed to generate electricity to power homes, transport and industries.

<span class="mw-page-title-main">Hydroelectricity in the United Kingdom</span>

As of 2018, hydroelectric power stations in the United Kingdom accounted for 1.87 GW of installed electrical generating capacity, being 2.2% of the UK's total generating capacity and 4.2% of UK's renewable energy generating capacity. This includes four conventional hydroelectric power stations and run-of-river schemes for which annual electricity production is approximately 5,000 GWh, being about 1.3% of the UK's total electricity production. There are also four pumped-storage hydroelectric power stations providing a further 2.8 GW of installed electrical generating capacity, and contributing up to 4,075 GWh of peak demand electricity annually.

Oscillating water columns (OWCs) are a type of wave energy converter that harness energy from the oscillation of the seawater inside a chamber or hollow caused by the action of waves. OWCs have shown promise as a renewable energy source with low environmental impact. Because of this, multiple companies have been working to design increasingly efficient OWC models. OWC are devices with a semi-submerged chamber or hollow open to the sea below, keeping a trapped air pocket above a water column. Waves force the column to act like a piston, moving up and down, forcing the air out of the chamber and back into it. This continuous movement forces a bidirectional stream of high-velocity air, which is channeled through a power take-off (PTO). The PTO system converts the airflow into energy. In models that convert airflow to electricity, the PTO system consists of a bidirectional turbine. This means that the turbine always spins the same direction regardless of the direction of airflow, allowing for energy to be continuously generated. Both the collecting chamber and PTO systems will be explained further under "Basic OWC Components."

<span class="mw-page-title-main">Floating solar</span> Systems of solar cell panels installed on a structure that floats on a body of water

Floating solar or floating photovoltaics (FPV), sometimes called floatovoltaics, are solar panels mounted on a structure that floats on a body of water, typically a reservoir or a lake such as drinking water reservoirs, quarry lakes, irrigation canals or remediation and tailing ponds.

The Aguçadoura test site is an offshore location in the north of Portugal where grid connected offshore renewable energy devices have been tested, for research and project demonstration. It is about 5 km (3 miles) off the coast of Aguçadoura, Póvoa de Varzim, about 35 km NNE of central Porto.

AWS Ocean Energy Ltd is a Scottish wave energy device developer, based in Dochfour near Inverness, Highland. The company has developed and tested several concepts, primarily the Archimedes Waveswing (AWS) after which the company is named.

References

  1. "Ocean Grazer project". www.rug.nl. Advanced Production Engineering Research | University of Groningen. Archived from the original on 2018-03-30. Retrieved 2018-03-30.
  2. 1 2 "Home". Ocean Grazer. Retrieved 2024-07-07.
  3. 1 2 "Ocean Grazer 3.0 – Offshore renewable energy: Wind, Wave, and Storage". oceangrazer.com. Retrieved 2018-03-30.
  4. 1 2 3 Vakis, Antonis I.; Anagnostopoulos, John S. (2016-10-01). "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter". Renewable Energy. 96: 531–47. doi: 10.1016/j.renene.2016.04.076 . ISSN   0960-1481.
  5. Garanovic, Amir (2021-10-26). "Ocean Grazer to charge energy transition with Ocean Battery". Offshore Energy. Retrieved 2024-07-07.
  6. 1 2 Wei, Y.; Barradas-Berglind, J.J.; Van Rooij, M.; Prins, W.A.; Jayawardhana, B.; Vakis, A.I. (2017-10-01). "Investigating the adaptability of the multi-pump multi-piston power take-off system for a novel wave energy converter". Renewable Energy. 111: 598–610. doi:10.1016/j.renene.2017.04.042. ISSN   0960-1481.
  7. Barradas-Berglind, J.J.; Muñoz-Arias, M.; Wei, Y.; Prins, W.A.; Vakis, A.I.; Jayawardhana, B. (2017-07-01). "Towards Ocean Grazer's Modular Power Take-Off System Modeling: a Port-Hamiltonian Approach" (PDF). IFAC-PapersOnLine. 50 (1): 15663–69. doi: 10.1016/j.ifacol.2017.08.2397 . ISSN   2405-8963.
  8. 1 2 Soares, C. Guedes (2016). Progress in Renewable Energies Offshore: Proceedings of the 2nd International Conference on Renewable Energies Offshore (RENEW2016), Lisbon, Portugal, 24–26 October 2016. CRC Press. ISBN   978-1351858540.
  9. Cruz, João, ed. (2008). Ocean wave energy : current status and future perspectives. Berlin: Springer. ISBN   978-3540748946. OCLC   233973506.