Olarian orogeny

Last updated

The Olarian orogeny was a metamorphic and orogenic event in the Gawler Craton of Australia in the Proterozoic. A subduction zone off the coast of proto-Australia and the collision of the Warumpi Province led to metamorphism. [1] [2]

See also

Related Research Articles

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Proterozoic</span> Third eon of the geologic timescale, last eon of the Precambrian Supereon

The Proterozoic is a geological eon spanning the time interval from 2500 to 538.8 million years ago. It is the most recent part of the Precambrian "supereon". It is also the longest eon of the Earth's geologic time scale, and it is subdivided into three geologic eras : the Paleoproterozoic, Mesoproterozoic, and Neoproterozoic.

<span class="mw-page-title-main">Pannotia</span> Hypothesized Neoproterozoic supercontinent from the end of the Precambrian

Pannotia, also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontinent that formed at the end of the Precambrian during the Pan-African orogeny, during the Cryogenian period and broke apart 560 Ma with the opening of the Iapetus Ocean, in the late Ediacaran and early Cambrian. Pannotia formed when Laurentia was located adjacent to the two major South American cratons, Amazonia and Río de la Plata. The opening of the Iapetus Ocean separated Laurentia from Baltica, Amazonia, and Río de la Plata. In 2022 the whole concept of Pannotia has been put into question by scientists who argue its existence is not supported by geochronology, "the supposed landmass had begun to break up well before it was fully assembled".

<span class="mw-page-title-main">Nena (supercontinent)</span> Early Proterozoic supercontinent

Nena, an acronym for Northern Europe–North America, was the Early Proterozoic amalgamation of Baltica and Laurentia into a single "cratonic landmass", a name first proposed in 1990. Since then several similar Proterozoic supercontinents have been proposed, including Nuna and Arctica, that include other Archaean cratons, such as Siberia and East Antarctica.

<span class="mw-page-title-main">Grenville orogeny</span> Mesoproterozoic mountain-building event

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

<span class="mw-page-title-main">Geology of Australia</span> Overview of the geology of Australia

The geology of Australia includes virtually all known rock types, spanning a geological time period of over 3.8 billion years, including some of the oldest rocks on earth. Australia is a continent situated on the Indo-Australian Plate.

The Pan-African orogeny was a series of major Neoproterozoic orogenic events which related to the formation of the supercontinents Gondwana and Pannotia about 600 million years ago. This orogeny is also known as the Pan-Gondwanan or Saldanian Orogeny. The Pan-African orogeny and the Grenville orogeny are the largest known systems of orogenies on Earth. The sum of the continental crust formed in the Pan-African orogeny and the Grenville orogeny makes the Neoproterozoic the period of Earth's history that has produced most continental crust.

<span class="mw-page-title-main">Geology of Antarctica</span> Geologic composition of Antarctica

The geology of Antarctica covers the geological development of the continent through the Archean, Proterozoic and Phanerozoic eons.

<span class="mw-page-title-main">East Antarctic Shield</span> Cratonic rock body which makes up most of the continent Antarctica

The East Antarctic Shield or Craton is a cratonic rock body that covers 10.2 million square kilometers or roughly 73% of the continent of Antarctica. The shield is almost entirely buried by the East Antarctic Ice Sheet that has an average thickness of 2200 meters but reaches up to 4700 meters in some locations. East Antarctica is separated from West Antarctica by the 100–300 kilometer wide Transantarctic Mountains, which span nearly 3,500 kilometers from the Weddell Sea to the Ross Sea. The East Antarctic Shield is then divided into an extensive central craton that occupies most of the continental interior and various other marginal cratons that are exposed along the coast.

The Kimban orogeny, also termed the Strangways orogeny, affected the Gawler Craton in what is now Australia between 1.73 and 1.69 billion years ago in the Proterozoic. As the most widespread orogenic event in the craton's evolution, the Kimban orogeny led to widely variable metamorphism included granulite and greenschist-grade on the sequence of metamorphic facies, preserved in the Tunkillia, Moody and Middlecamp rock suites. The Moody Suite formed late in the orogeny and was intruded with hornblende-rich granitoids and muscovite-rich leucogranites.

The Miltalie orogeny also termed the Miltalie event was a small orogenic event 400 millions after the Sleaford orogeny in the Proterozoic, indicated by metasedimentary rocks preserved in the Miltalie Gneiss.

The Cornian orogeny was a small scale orogenic event between 2.0 and 1.86 billion years ago in the Proterozoic. At the time, the Gawler Craton in what is now Australia may have been experiencing passive margin conditions, given the rocks found in the Hutchison Group overlying the Miltalie Gneiss. The orogeny caused metamorphism and east-southeast striking rock fabrics. The event is mostly preserved east of the Kalinjala Shear Zone along with the Donington Suite intrusive rocks.

The Isan orogeny affected the Mount Isa Inlier in what is now Australia between 1.65 and 1.50 billion years ago in the Proterozoic. Deformation from the event is widespread and complex in the Eastern Fold Belt, with no consensus on timing and sub-events as of 2017. To date, most research has focused on the Snake Creek Anticline, Selwyn zone and Mary Kathleen Domain. At the end of the orogeny, massive A-type granitoids intruded with the Williams-Naraku Batholith.

The Barramundi orogeny was an orogenic event in what is now Australia between 1.88 and 1.84 billion years ago in the Proterozoic that affected Mount Isa and Pine Creek orogenic domains. Immediately before the orogeny, extension of Archean crust led to widespread basin formation. A large magmatic, granitoid forming event during the orogeny produced rocks with unusually similar chemistry. Other rocks include monzogranites, syenogranites, dacite and rhyolite rich in phenocrysts, ignimbrite sheets, and hornblende-tonalite.

The Kararan orogeny was an orogenic event in the Gawler Craton of Western Australia during the Proterozoic between 1.57 and 1.55 billion years ago which reworked rocks metamorphosed during the Kimban orogeny.

<span class="mw-page-title-main">Mazatzal orogeny</span> Mountain-building event in North America

The Mazatzal orogeny was an orogenic event in what is now the Southwestern United States from 1650 to 1600 Mya in the Statherian Period of the Paleoproterozoic. Preserved in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1700-1600 Mya age Mazatzal island arc terrane with the proto-North American continent. This was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Yavapai orogeny</span> Mountain building event 1.7 billion years ago in the southwestern United States

The Yavapai orogeny was an orogenic (mountain-building) event in what is now the Southwestern United States that occurred between 1710 and 1680 million years ago (Mya), in the Statherian Period of the Paleoproterozoic. Recorded in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1800-1700 Mya age Yavapai island arc terrane with the proto-North American continent. This was the first in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Picuris orogeny</span> Mountain-building event in what is now the Southwestern US

The Picuris orogeny was an orogenic event in what is now the Southwestern United States from 1.43 to 1.3 billion years ago in the Calymmian Period of the Mesoproterozoic. The event is named for the Picuris Mountains in northern New Mexico and interpreted either as the suturing of the Granite-Rhyolite crustal province to the southern margin of the proto-North American continent Laurentia or as the final suturing of the Mazatzal crustal province onto Laurentia. According to the former hypothesis, this was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Geology of the Kimberley (Western Australia)</span> Overview of geology of the Kimberley

The geology of the Kimberley, a region of Western Australia, is a rock record of early Proterozoic plate collision, orogeny and suturing between the Kimberley Craton and the Northern Australia Craton, followed by sedimentary basin formation from Proterozoic to Phanerozoic.

References

  1. Payne, J.L. and co-authors (2009). "Evolution of the Mawson Continent". Precambrian Research. The Geological Society of London. 320: 403–423. doi: 10.1016/j.precamres.2018.11.013 . S2CID   135336811.
  2. Wingate & Evans (2003). Paleomagnetic constraints on the Proterozoic tectonic evolution of Australia. The Geological Society of London. p. 82. ISBN   9781862391253.