OneM2M

Last updated
oneM2M
Industry Telecommunications industry
Founded2012
Number of locations
8
Key people
Enrico Scarrone, Telecom Italia (Steering Committee Chairman)
Roland Hechwartner, Deutsche Telekom AG (Technical Plenary Chair)
Number of employees
5000
Website www.onem2m.org

oneM2M is a global partnership project founded in 2012 and constituted by 8 of the world's leading ICT standards development organizations, notably: ARIB (Japan), ATIS (United States), CCSA (China), ETSI (Europe), TIA (USA), TSDSI (India), TTA (Korea) and TTC (Japan). The goal of the organization is to create a global technical standard for interoperability concerning the architecture, API specifications, security and enrolment solutions for Machine-to-Machine and IoT technologies based on requirements contributed by its members.

Contents

The standardised specifications produced by oneM2M enable an Eco-System to support a wide range of applications and services such as smart cities, smart grids, connected car, home automation, public safety, and health.

oneM2M technology is removing fragmentation in the IoT world. Because it is independent of the connectivity- or protocol technology that is used for transport, it is designed to be a long term solution for IoT deployment.

Organisation

Membership

A oneM2M Member is any legal entity which has an interest in the development and/or implementation of oneM2M Technical Specifications and Technical Reports. oneM2M Members must be members of a oneM2M Partner:

• ARIB – Japan

• ATIS – U.S.

• CCSA – China

• ETSI – Europe

• TIA – U.S.

• TSDSI – India

• TTA – Korea

• TTC – Japan.

Members can attend and participate in the oneM2M Technical Plenary meetings and its Working Groups where they have one vote each. They can also attend the oneM2M Steering Committee meetings but do not have voting rights.

oneM2M currently has more than 200 participating partners and members, among the main actors of the ICT industry like for instance Nokia, AT&T, BT Group, Samsung, Telecom Italia, IBM, Deutsche Telekom, SK Telecom, Cisco, Orange, Qualcomm, InterDigital, Intel, Huawei, LG Uplus, KDDI, etc.

oneM2M actively encourages industry associations and forums with specific application requirements to participate in oneM2M, in order to ensure that the solutions developed support their specific needs.

oneM2M Standard

It is an open standard with a transparent development process and open access to all deliverables.

ITU-T Transposition

The oneM2M standards are internationally recognized and transposed by ITU-T under the Y.4500 series.

Technical overview

Service Layer for multivendor interoperability. The architecture standardised by oneM2M defines an IoT Service Layer, i.e. a vendor-independent software Middleware between processing and communication hardware and IoT applications providing a set of functions commonly needed by IoT applications. The oneM2M Service Layer provides use case-independent functions.

• oneM2M Common Service layer Functions (CSF’s) provide proper:

• Identification of users and applications

• Authentication and authorization of users and applications

• End-to-end data encryption

• Remote provisioning and service activation

• Device management

• Connectivity setup and data transmission scheduling

• Data aggregation, buffering in case of missing connectivity and synchronisation upon connectivity re-establishment

• Group management and application and data discovery functions

The functions listed above provided by the oneM2M common service layer, are exposed and controlled via globally standardized vendor-independent and uniform APIs, towards the IoT applications.

IoT applications or more generically “Application Entities” AE’s are generic terms for applications executed in so-called Application Dedicated Nodes ADNs or Middle Nodes MNs and at the Infrastructure Node IN.

Applications (AEs) at the device (ADN, MN) and the Infrastructure Platform (IN) are separated by the oneM2M APIs from the actual oneM2M Common Service functions (CSFs) like the ones listed above.

Details and specifics of the underlying - connectivity technologies, transport protocols and data serialisation formats are not exposed to the application developer. This avoids the necessity of detailed expertise in used connectivity technologies, and hence allows the application developer to focus on the actual customer IoT application.

Interactions between oneM2M Common Service Functions (CSFs) and the application are solely based on the oneM2M globally standardised, vendor independent, uniform APIs towards the applications.

For an application developer, oneM2M based technology appears like an operating system, which takes over common basic functions in context of connectivity and hardware as listed above. Hence the IoT Service Layer specified by oneM2M can be seen in a similar way as a mobile operating system within the smart phone eco system.

Due to this separation, application developers can focus on developing the actual IoT application for the Device e.g focusing on:

• Measuring physical parameters, pre-processing of data, controlling attached hardware or Interworking with other technologies (Modbus, CAN-Bus, OPC-UA gateways, etc.) On the infrastructure (Platform) the separation by APIs between oneM2M CSFs and applications, enables a separation between “low level” tasks in context of connectivity over wide area networks (Device Management, scheduling of data transmission, enrolment of security functions and credentials, revocation of faulty device applications), and actual cloud and IoT application platforms like:

• Data analytics, rule engines, presentation of data, user interfaces, etc.

Compared to IoT devices being connected to IoT Platforms without oneM2M, the separation between Applications and oneM2M CSFs, enables the device to become independent from the actual cloud respective IoT Application Platform provider. Beneficially the oneM2M CSFs will become part of the communication chipset to achieve coverage in a wide range of devices.[ citation needed ]

Architecture Overview

oneM2M standard employs a simple horizontal, platform architecture that fits within a three layer model comprising applications, services and networks. In the first of these layers, Application Entities (AEs) reside within individual device and sensor applications. [1] They provide a standardized interface to manage and interact with applications. Common Services Entities (CSEs) play a similar role in the services layer which resides between the applications layer and the network layer. The network layer ensures that devices and sensors and applications are able to function in a network-agnostic manner. [2] [3]

History

oneM2M was formed in July 2012 [4] and consists of eight of the world's preeminent standards development organizations (SDOs), notably:

These SDOs were joined by six industry fora, consortia or standards bodies (Broadband Forum, CEN, CENELEC, GlobalPlatform, Next Generation M2M Consortium, OMA).

oneM2M began some of the earliest work on standardization of a common platform for internet of things (IoT) systems. [6] In 2018, S. Korea's TTA reported its cooperative efforts with the ITU to bridge standardization gaps by transposing the oneM2M standard to an ITU standard [7] .

Partners

oneM2M currently have more than 200 participating partners and members consisting of Alcatel-Lucent, AT&T, BT Group, Adobe, Ericsson, Deutsche Telekom, IBM, Cisco, Sierra Wireless, InterDigital, Intel, Samsung, [8] LG Uplus and Telefonica. [4] [9]

Regional Developments

South Korea is one of the leading markets for solutions based on the oneM2M standard. South Korea’s national IoT Master Plan makes explicit reference to oneM2M as a strategic enabler for IoT applications and companies developing IoT solutions. [10] The city of Busan is implementing an open platform based on oneM2M to support a smart-city eco-system of industry-university associations. [11]

In Europe, Hewlett Packard Enterprise has reported commercial success in the enterprise and smart cities sectors. [12] [13]

Within the UK, a public-private partnership is using InterDigital's oneM2MTM standards-based IoT platform developed by InterDigital to support a large-scale, intelligent transport systems trial. The trial, oneTRANSPORT, is part funded by InnovateUK and involves 11 public and private sector organizations with an operational footprint that covers four contiguous counties in England (Buckinghamshire, Hertfordshire, Northamptonshire and Oxfordshire). [14] The aim of the trial is to demonstrate several journey planning, transport-event and incident management applications.

Standardization Releases

Release 1 was issued in February 2015. It provided a standardized, general-purpose horizontal architecture for IoT platform operators and service providers to deploy IoT solutions.

Release 2 was issued in August 2016. It added an interworking framework enabling each service provider to support more types of devices on their IoT platform. Release 2 also provided enhanced end-to-end security features.

Release 3 was issued in December 2018. It added a complementary set of oneM2M value-added services to complement IoT features in 3GPP standards. These features help to mitigate network congestion and security issues in mobile operator networks, creating a pathway to scalable IoT deployments.

Open Source Projects

Several independent Open Source foundations and projects have been actively using oneM2M.[ citation needed ]

• OM2M, hosted by the Eclipse Foundation and part of Eclipse’s IoT Working Group: Offers a flexible oneM2M-based platform to implement horizontal M2M servers, gateways, and devices. It brings forward a modular architecture, running on top of an OSGi container, which is highly extensible via plug-ins.

• OCEAN, open alliance for IoT standard, Open source implementations for oneM2M server/gateway/device platforms and applications are supported. Also, developer tools including platform resource browser, self-conformance testing tool are provided. The oneM2M implementations for open hardware like Raspberry Pi, Arduino are distributed to help oneM2M product development. Mobius, the oneM2M server implementation, got the oneM2M certification and it is designated as one of the golden samples.

• OS-IoT, the ATIS Open Source Internet of Things is an open source software library that simplifies the development of IoT devices, particularly small clients, that connect to the oneM2M ecosystem.

• OpenMTC is an integration middleware based on the oneM2M standard, for conducting applied research and developing innovative M2M and IoT applications. Its horizontal service approach easily integrates devices from different Industrial IoT verticals, independent of the underlying hardware or network infrastructure.

• IOTDM, part of the OpenDaylight project hosted by the Linux Foundation: Developing a oneM2M-based IoT Data Broker to enable authorised applications to retrieve IoT data uploaded by any device.

• OASIS SI, part of Open-source Architecture Semantic IoT Service-platform project: Developing code for the oneM2M-based IoT server platform. It consists of protocol binding, controller & resource handling and database layer for flexibility.

• oneM2MTester is the world's first free open source conformance testing tool that developers can use to check the compliance of their platforms and applications with oneM2M specifications. The oneM2MTester is built upon Eclipse TITAN, which is a free open source TTCN-3 compilation and execution framework also supporting Eclipse IDE.


Related Research Articles

The Organization for the Advancement of Structured Information Standards is a nonprofit consortium that works on the development, convergence, and adoption of open standards for cybersecurity, blockchain, Internet of things (IoT), emergency management, cloud computing, legal data exchange, energy, content technologies, and other areas.

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low-data-rate, and close proximity wireless ad hoc network.

Message-oriented middleware (MOM) is software or hardware infrastructure supporting sending and receiving messages between distributed systems. MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols. The middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces. APIs that extend across diverse platforms and networks are typically provided by MOM.

OpenMAX, often shortened as "OMX", is a non-proprietary and royalty-free cross-platform set of C-language programming interfaces. It provides abstractions for routines that are especially useful for processing of audio, video, and still images. It is intended for low power and embedded system devices that need to efficiently process large amounts of multimedia data in predictable ways, such as video codecs, graphics libraries, and other functions for video, image, audio, voice and speech.

OMA SpecWorks, previously the Open Mobile Alliance (OMA), is a standards organization which develops open, international technical standards for the mobile phone industry. It is a nonprofit Non-governmental organization (NGO), not a formal government-sponsored standards organization as is the International Telecommunication Union (ITU): a forum for industry stakeholders to agree on common specifications for products and services.

<span class="mw-page-title-main">Z-Wave</span> Wireless standard for intelligent building networks

Z-Wave is a wireless communications protocol used primarily for residential and commercial building automation. It is a mesh network using low-energy radio waves to communicate from device to device, allowing for wireless control of smart home devices, such as smart lights, security systems, thermostats, sensors, smart door locks, and garage door openers. The Z-Wave brand and technology are owned by Silicon Labs. Over 300 companies involved in this technology are gathered within the Z-Wave Alliance.

<span class="mw-page-title-main">Telit Cinterion</span> Internet of things communications company

Telit Cinterion is an Internet of Things (IoT) Enabler company headquartered in Irvine, California, United States. It is a privately held company with key operations in the US, Brazil, Italy, Israel, and Korea.

Machine to machine (M2M) is direct communication between devices using any communications channel, including wired and wireless. Machine to machine communication can include industrial instrumentation, enabling a sensor or meter to communicate the information it records to application software that can use it. Such communication was originally accomplished by having a remote network of machines relay information back to a central hub for analysis, which would then be rerouted into a system like a personal computer.

The Internet of things (IoT) describes devices with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communications networks. The Internet of things encompasses electronics, communication and computer science engineering. Internet of things has been considered a misnomer because devices do not need to be connected to the public internet, they only need to be connected to a network, and be individually addressable.

Telenor Objects AS is a Norwegian service provider within machine-to-machine communication, and constitutes one of the two Telenors strategic initiatives to catch the market for M2M, or connected objects. It is a wholly owned subsidiary of Telenor ASA, the incumbent telecommunications company in Norway. Telenor's M2M initiative is organized through Telenor Next - with Telenor Objects and Telenor Connexion serving customers in each part of the value chain, low and high in the valiue-chain, respectively. Telenor Objects grew out of Telenor R&I, and is headquartered in Oslo.

Network functions virtualization (NFV) is a network architecture concept that leverages IT virtualization technologies to virtualize entire classes of network node functions into building blocks that may connect, or chain together, to create and deliver communication services.

AllJoyn is an open source software framework that allows compatible devices and applications to find each other, communicate and collaborate across the boundaries of product category, platform, brand, and connection type. Originally the AllSeen Alliance promoted the project, from 2013 until 2016 when the alliance merged with the Open Connectivity Foundation (OCF). In 2018 the source code became hosted by GitHub.

OMA Lightweight M2M (LwM2M) is a protocol from the Open Mobile Alliance for machine to machine (M2M) or Internet of things (IoT) device management and service enablement. The LwM2M standard defines the application layer communication protocol between an LwM2M Server and an LwM2M Client which is located in an IoT device. It offers an approach for managing IoT devices and allows devices and systems from different vendors to co-exist in an IoT- ecosystem. LwM2M was originally built on Constrained Application Protocol (CoAP) but later LwM2M versions also support additional transfer protocols.

The IoTivity is an open source framework created to standardize inter-device connections for the IoT. Any individual or company can contribute to the project, and this may influence OCF standards indirectly. However, being a member of the OCF can benefit from patent cross-licensing protection.

SensorThings API is an Open Geospatial Consortium (OGC) standard providing an open and unified framework to interconnect IoT sensing devices, data, and applications over the Web. It is an open standard addressing the syntactic interoperability and semantic interoperability of the Internet of Things. It complements the existing IoT networking protocols such CoAP, MQTT, HTTP, 6LowPAN. While the above-mentioned IoT networking protocols are addressing the ability for different IoT systems to exchange information, OGC SensorThings API is addressing the ability for different IoT systems to use and understand the exchanged information. As an OGC standard, SensorThings API also allows easy integration into existing Spatial Data Infrastructures or Geographic Information Systems.

Senet Inc. is an American Low Power Wide Area Network (LPWAN) provider for IoT/M2M applications. The Senet Network is described as "the first and only public provider of LPWA networks with class leading LoRa® modulation for IoT/M2M applications in North America”. Its platform is positioned to meet the needs of the growing “Internet of Things” (IoT) ecosystem.

<span class="mw-page-title-main">SensorUp</span>

SensorUp Inc. is a Canadian company based in Calgary, Alberta, Canada, specializing in methane emissions management software. It is recognized for its advancements in the oil and gas sector with its methane emissions management SaaS platform, SensorUp GEMS, and for developing the Open Geospatial Consortium SensorThings API standard specification.

The Open Connectivity Foundation (OCF) is an industry organization to develop standards, promote a set of interoperability guidelines, and provide a certification program for devices involved in the Internet of things (IoT). By 2016 it claimed to be one of the biggest industrial connectivity standards organizations for IoT. Its membership includes Samsung Electronics, Intel, Microsoft, Qualcomm and Electrolux.

The industrial internet of things (IIoT) refers to interconnected sensors, instruments, and other devices networked together with computers' industrial applications, including manufacturing and energy management. This connectivity allows for data collection, exchange, and analysis, potentially facilitating improvements in productivity and efficiency as well as other economic benefits. The IIoT is an evolution of a distributed control system (DCS) that allows for a higher degree of automation by using cloud computing to refine and optimize the process controls.

Matter is an open-source connectivity standard for smart home and IoT devices. It aims to improve interoperability and compatibility between different manufacturer and security, and always allowing local control as an option.

References

  1. Carlton, Alan. "IoT is not about radios; it's all about data". Network World . Retrieved 15 September 2016.
  2. Gopalakrishnan, Arvind. "oneM2M implications on IOT platforms for enterprises". Dataquest . Retrieved 25 August 2016.
  3. Abbas, Muntazir. "C-DoT builds first open machine-to-machine platform". The Economic Times . Retrieved 25 August 2016.
  4. 1 2 Yoo-chul, Kim (15 July 2016). "LG Uplus expands international business". The Korea Times . Retrieved 25 August 2016.
  5. "oneM2M welcomes GlobalPlatform, TSDSI as partners". Telecompaper. Retrieved 25 August 2016.
  6. "Industrial Internet Consortium - Business Strategy & Innovation Framework - Figure 6-3: Timeline of Standardization Efforts" (PDF). www.iiconsortium.org. Retrieved 2018-12-13.
  7. "TTA-ITU cooperative BSG (bridging the standardization gap) project". www.tta.or.kr. Retrieved 2018-12-13.
  8. Maddox, Teena. "Can Samsung's $1.2 billion investment launch the era of 'human-centered' IoT?". TechRepublic . Retrieved 25 August 2016.
  9. Babcock, Charles. "HPE Offers IoT Platform To Build, Analyze Data". InformationWeek . Retrieved 25 August 2016.
  10. Waring, Joseph (10 June 2015). "SK Telecom unveils open IoT platform based on oneM2M". Mobile World Live. Retrieved 25 August 2016..
  11. "Busan - Global Smart City". Busan - Global Smart City . Retrieved 10 October 2016.
  12. "HPE's IoT Platform Supports oneM2M, LoRa, SigFox". Linux.com . Retrieved 2016-06-19.
  13. Preimesberger, Chris. "HPE Moves Into IoT Management With All-Purpose Platform". eWeek . Retrieved 25 August 2016.
  14. "oneTRANSPORT Intelligent Transport System trial". oneTRANSPORT. Retrieved 22 September 2016.