One (sixth form college)

Last updated

One
One (sixth form college).jpg
Address
Scrivener Drive

, ,
IP8 3SU

England
Information
Type Sixth form college
Established2010
Ofsted Reports
Head of CentreJake Robson
Assistant Head of CentreAndrew Adamson
Gender Coeducational
Age16to 19
Enrolment1750 as of May 2015
Capacity2036
PublicationOne Magazine
Websitesuffolkone.ac.uk

One (formerly Suffolk One) is a sixth form college in Ipswich in the English county of Suffolk. [1] Opened in 2010, and a member of the South West Ipswich and South Suffolk (SWISS) Partnership, it provides further education in South Suffolk. The College was assessed as 'Outstanding' by Ofsted in May 2015. [2]

Contents

Design

Due to the noise generated by the adjoining busy dual carriageway, it was not possible to use natural ventilation in the teaching spaces. The Mechanical and Engineering consultants, John Packer Associates, [3] aimed to use low energy and sustainable technologies wherever possible to reduce energy consumption and carbon emissions across the site, whilst maintaining comfortable internal conditions for academic development. The use of Interseasonal Heat Transfer from ICAX, using the 1,600 metre square bus turning area as a concrete solar collector [4] made this possible. Heat collected in summer is stored in thermal banks [5] in the ground for retrieval in winter by ground source heat pumps to enable natural heating to be provided without burning fossil fuels.

Related Research Articles

An autonomous building is a building designed to be operated independently from infrastructural support services such as the electric power grid, gas grid, municipal water systems, sewage treatment systems, storm drains, communication services, and in some cases, public roads.

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

A Trombe wall is a massive equator-facing wall that is painted a dark color in order to absorb thermal energy from incident sunlight and covered with a glass on the outside with an insulating air-gap between the wall and the glaze. A Trombe wall is a passive solar building design strategy that adopts the concept of indirect-gain, where sunlight first strikes a solar energy collection surface in contact with a thermal mass of air. The sunlight absorbed by the mass is converted to thermal energy (heat) and then transferred into the living space.

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

A solar chimney – often referred to as a thermal chimney – is a way of improving the natural ventilation of buildings by using convection of air heated by passive solar energy. A simple description of a solar chimney is that of a vertical shaft utilizing solar energy to enhance the natural stack ventilation through a building.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar cooker, solar air heaters.

<span class="mw-page-title-main">Earthship</span> Style of architecture that uses native materials and upcycled materials to build homes.

An Earthship is a style of architecture developed in the late 20th century to early 21st century by architect Michael Reynolds. Earthships are designed to behave as passive solar earth shelters made of both natural and upcycled materials such as earth-packed tires. Earthships may feature a variety of amenities and aesthetics, and are designed to withstand the extreme temperatures of a desert, managing to stay close to 70 °F (21 °C) regardless of outside weather conditions. Earthship communities were originally built in the desert of northern New Mexico, near the Rio Grande, and the style has spread to small pockets of communities around the globe, in some cases in spite of legal opposition to its construction and adoption.

<span class="mw-page-title-main">Thermal energy storage</span> Technologies to store thermal energy

Thermal energy storage (TES) is achieved with widely different technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

Seasonal thermal energy storage (STES), also known as inter-seasonal thermal energy storage, is the storage of heat or cold for periods of up to several months. The thermal energy can be collected whenever it is available and be used whenever needed, such as in the opposing season. For example, heat from solar collectors or waste heat from air conditioning equipment can be gathered in hot months for space heating use when needed, including during winter months. Waste heat from industrial process can similarly be stored and be used much later or the natural cold of winter air can be stored for summertime air conditioning.

<span class="mw-page-title-main">Central solar heating</span> Solar architecture

Central solar heating is the provision of central heating and hot water from solar energy by a system in which the water is heated centrally by arrays of solar thermal collectors and distributed through district heating pipe networks.

<span class="mw-page-title-main">Thurston Community College</span> Community school in Thurston, Suffolk, England

Thurston Community College is a co-educational secondary school and sixth form located in Thurston, Suffolk, England. As of 2018, it has 1,733 students aged 11–18 drawn from the local village and surrounding rural communities.

Chantry Academy is a secondary school with academy status in the Chantry area of Ipswich in the English county of Suffolk. The school educates children aged 11 to 16 and has around 750 pupils. The current principal, Craig D'Cunha, took up the post in February 2015.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

<span class="mw-page-title-main">West Suffolk College</span> School in Bury St Edmunds, Suffolk, England

West Suffolk College is a Further Education college in Bury St Edmunds, Suffolk. The college delivers a range of courses, including vocational and technical courses, apprenticeships, and an array of higher-apprenticeships and bachelor's degree courses accredited by the University of East Anglia. Over 12,000 students are enrolled at West Suffolk College.

<span class="mw-page-title-main">Solar air heat</span> Solar thermal technology

Solar air heating is a solar thermal technology in which the energy from the sun, insolation, is captured by an absorbing medium and used to heat air. Solar air heating is a renewable energy heating technology used to heat or condition air for buildings or process heat applications. It is typically the most cost-effective out of all the solar technologies, especially in commercial and industrial applications, and it addresses the largest usage of building energy in heating climates, which is space heating and industrial process heating.

Renewable thermal energy is the technology of gathering thermal energy from a renewable energy source for immediate use or for storage in a thermal battery for later use.

References

  1. Mitchell, Gemma (27 January 2015). "Staff to be cut at Ipswich's One sixth form as part of £2million savings drive". Ipswich Star . Ipswich. Retrieved 10 May 2016.
  2. Hunter, Matt (4 June 2015). "Top marks for One sixth form, formerly Suffolk One, in glowing Ofsted report". Ipswich Star . Ipswich. Retrieved 10 May 2016.
  3. John Packer Associates
  4. Concrete Solar Collector
  5. ThermalBanks