Optical jukebox

Last updated

An optical jukebox is a robotic data storage device that can automatically load and unload optical discs, such as Compact Disc, DVD, Ultra Density Optical or Blu-ray and can provide terabytes (TB) or petabytes (PB) of tertiary storage. The devices are often called optical disk libraries, "optical storage archives", robotic drives, or autochangers. Jukebox devices may have up to 2,000 slots for disks, and usually have a picking device that traverses the slots and drives. Zerras Inc. provides a removeable capsule that holds up to 200 discs per library which can be scaled-out to manage 1600 discs per 42U rack unit. [1] The arrangement of the slots and picking devices affects performance and maintenance costs, depending on the robotics design, the space between a disk and the picking device. Seek times and transfer rates vary depending upon the optical technology used.

Contents

History and function

One of the first examples of an optical jukebox was the unit designed and built at the Royal Aerospace Establishment at Farnborough, England. The unit had twin read/write heads, 12" WORM disks and the carousels were pneumatically driven. It was produced to replace the 1/2 inch magnetic tape devices that were being used to store satellite data.

Jukeboxes are used in high-capacity archive storage environments such data centers and on-premise server rooms to store long-term data such as imaging, medical, compliance records, video and other high-value data assets, objects, and files. Hierarchical storage management is a strategy that moves little-used or unused files from fast magnetic storage to optical jukebox devices in a process called migration. If the files are needed, they are migrated back to magnetic disk. Optical disc libraries are also useful for making backups and in disaster recovery situations. Today one of the most important uses for jukeboxes is to archive data. Archiving data is different from backups in that the data is stored on media designed to last up to 100 years. The data is usually permanently written on Write Once Read Many (WORM)-type discs [2] so it cannot be erased or changed. [3]

Jukeboxes typically contain internal SCSI- or SATA-based recordable drives (CD-ROM, CD-R, DVD-ROM, DVD-R, DVD-RAM, UDO or Blu-ray) that connect directly to a file server and are managed by a third-party jukebox management software. This software controls the movement of media within the jukebox, and the pre-mastering of data prior to the recording process.

Before the advent of the modern SAN and much cheaper hard disks, high-volume storage on DVD was more cost-effective than magnetic media. Jukebox capacities have greatly increased with the release of the 128 gigabyte (GB) quad layer Blu-ray (BD) format, [4] with a road-map to increase to eight layers and 200 GB per disc. The current format, used in the DISC ArXtor7000 library, allows 89 TB of storage from a single 700-disc jukebox. Optical disc libraries like the TeraStack Solution can store up to 142 TB of online and nearline data with a nominal power draw of 425 watts. [5] These two units show the wide variance of product attributes. The optical storage archive library from Zerras allows up to 25TB of removeable optical storage in a single unit library with a power draw of 60 watts per unit and scale to 200TB in a 42U rack cluster. The Zerras Icebox differs from Sony Optical Data Archive libraries is it uses approved standard dual, tri, and quad layer blu-ray discs rather than proprietary Archival Disc standard format which is not backward compatible to standard blu-ray drives and discs in the market. [6]

Management software

The core functionality of optical library management software can be broken down into four parts: robotic control, filesystem authoring, file tracking, and access control.

Robotic control

All optical libraries comply with the standard SCSI command set. These commands are used for control and library geometry querying. When the management software is run, it will send inquiry requests to the optical library for the status of its contents. Number and type of drives, number and status of slots and other essential information is gathered. Following this, the management software may request data off of a particular piece of media or it may wish to perform some write operations on it. Any of these actions would require specific move commands sent from the management application to the optical library. An example of this would be to move a media from slot 50 to the drive number 3.

Filesystem authoring

Optical library management software handles all of the writing and reading of the filesystem content on the optical media. Once a media has been placed in a drive from its home slot, many operations can be taken. For example: The creation of a UDF filesystem on a blank media, the writing of a single file, or the reading of some data off of the filesystem on the media. Filesystem types available for optical media range from ISO standard technologies like UDF to proprietary formats.

File tracking

Optical library management software will often track the files and folders extant on a piece of optical media [7] by means of a database. Any filesystem data pertaining to an individual media would be available in this database. For example: paths and names of files and folders, file sizes, and all of the metadata that a modern filesystem may keep.

Access control

Optical library management software makes itself available to the OS in an assortment of ways. One of these ways in a Windows environment, is by way of virtual drive letters. [8] Essentially, the whole of an optical library can be viewed, read to and written to via a virtual filesystem while the management software handles all of the media movement and I/O requests invisibly in the background.

Another way that access to the optical library may be accomplished is by way of CIFS shares (more often seen with Unix-type optical library management applications). [9]

Access time issues

All the jukeboxes work best when only a few users need to access the discs at the same time. Small jukeboxes have only one or two CD, DVD, UDO or Blu-ray drives, so only one or two users can share the jukebox at the same time. If additional users want to use a new disc, they have to wait for the disc to be swapped by the robotics in the jukebox. This takes from 4 to 9 seconds. Larger jukeboxes have six or more readers, so more users can simultaneously access the different discs at the same time. A more efficient recommendation is to have a disk cache attached to the jukebox for a higher number of simultaneous users. This way, the configuration operates in a FILO (First In Last Out) Manner. Here, files accessed are only sent back to the optical discs after they have been utilized. Changes may or may not be saved or versioned based on the user configuration and accessibility settings on the storage management software that runs the optical jukebox. The number of drives in the jukebox can be up to six depending on the size of the jukebox. The drives will read and write the data to the RAID / Disc cache and then present to end users. This way the 4–6 seconds read time only occurs during the initial data read process, then the data is sent to the cache. [10]

Related Research Articles

Computer data storage Storage of digital data readable by computers

Computer data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.

Optical disc Flat, usually circular disc that encodes binary data

In computing and optical disc recording technologies, an optical disc (OD) is a flat, usually circular disc that encodes binary data (bits) in the form of pits and lands on a special material, often aluminum, on one of its flat surfaces. Its main uses are physical offline data distribution and long-term archival. Changes from pit to land or from land to pit correspond to a binary value of 1; while no change, regardless of whether in a land or a pit area, corresponds to a binary value of 0.

Universal Disk Format (UDF) is an open, vendor-neutral file system for computer data storage for a broad range of media. In practice, it has been most widely used for DVDs and newer optical disc formats, supplanting ISO 9660. Due to its design, it is very well suited to incremental updates on both recordable and (re)writable optical media. UDF was developed and maintained by the Optical Storage Technology Association (OSTA).

A disk image, in computing, is a computer file containing the contents and structure of a disk volume or of an entire data storage device, such as a hard disk drive, tape drive, floppy disk, optical disc, or USB flash drive. A disk image is usually made by creating a sector-by-sector copy of the source medium, thereby perfectly replicating the structure and contents of a storage device independent of the file system. Depending on the disk image format, a disk image may span one or more computer files.

Optical disc drive Type of computer disk storage dive

In computing, an optical disc drive (ODD) is a disc drive that uses laser light or electromagnetic waves within or near the visible light spectrum as part of the process of reading or writing data to or from optical discs. Some drives can only read from certain discs, but recent drives can both read and record, also called burners or writers. Compact discs, DVDs, and Blu-ray discs are common types of optical media which can be read and recorded by such drives.

Mount Rainier (packet writing) Method used to write to recordable optical discs

Mount Rainier (MRW) is a format for writable optical discs which provides the packet writing and defect management. Its goal is the replacement of the floppy disk. It is named after Mount Rainier, a volcano near Seattle, Washington, United States.

Live CD Complete, bootable computer installation that runs directly from a CD-ROM

A live CD is a complete bootable computer installation including operating system which runs directly from a CD-ROM or similar storage device into a computer's memory, rather than loading from a hard disk drive. A live CD allows users to run an operating system for any purpose without installing it or making any changes to the computer's configuration. Live CDs can run on a computer without secondary storage, such as a hard disk drive, or with a corrupted hard disk drive or file system, allowing data recovery.

Optical disc authoring Content publishing on optical disks

Optical disc authoring, including DVD and Blu-ray Disc authoring, is the process of assembling source material—video, audio or other data—into the proper logical volume format to then be recorded ("burned") onto an optical disc.

In information technology, a backup, or data backup is a copy of computer data taken and stored elsewhere so that it may be used to restore the original after a data loss event. The verb form, referring to the process of doing so, is "back up", whereas the noun and adjective form is "backup". Backups can be used to recover data after its loss from data deletion or corruption, or to recover data from an earlier time. Backups provide a simple form of disaster recovery; however not all backup systems are able to reconstitute a computer system or other complex configuration such as a computer cluster, active directory server, or database server.

Tape library Storage device containing a robot which automatically loads tapes into tape drives

In computer storage, a tape library, sometimes called a tape silo, tape robot or tape jukebox, is a storage device that contains one or more tape drives, a number of slots to hold tape cartridges, a barcode reader to identify tape cartridges and an automated method for loading tapes. Additionally, the area where tapes that are NOT currently in a silo are stored is also called a tape library. Tape libraries can contain millions of tapes.

Write once read many (WORM) describes a data storage device in which information, once written, cannot be modified. This write protection affords the assurance that the data cannot be tampered with once it is written to the device.

Professional Disc Proprietary optical disc format developed by Sony for storing digital video

Professional Disc (PFD) is a digital recording optical disc format introduced by Sony in 2003 primarily for XDCAM, its tapeless camcorder system. It was one of the first optical formats to utilize a blue laser, which allowed for a higher density of data to be stored on optical media compared to infrared laser technology used in the CD and red laser technology used in the DVD format.

In computing, data recovery is a process of salvaging deleted, inaccessible, lost, corrupted, damaged or formatted data from secondary storage, removable media or files, when the data stored in them cannot be accessed in a usual way. The data is most often salvaged from storage media such as internal or external hard disk drives (HDDs), solid-state drives (SSDs), USB flash drives, magnetic tapes, CDs, DVDs, RAID subsystems, and other electronic devices. Recovery may be required due to physical damage to the storage devices or logical damage to the file system that prevents it from being mounted by the host operating system (OS).

IBM defines optical storage as "any storage method that uses a laser to store and retrieve data from optical media." Britannica notes that it "uses low-power laser beams to record and retrieve digital (binary) data." Compact disc (CD) and DVD are examples of optical media.

In computing, external storage comprises devices that store information outside a computer. Such devices may be permanently attached to the computer, may be removable or may use removable media.

Optical disc recording technologies List of technologies used to write to optical discs

Optical disc authoring requires a number of different optical disc recorder technologies working in tandem, from the optical disc media to the firmware to the control electronics of the optical disc drive.

Ultra Density Optical Optical disc designed for the storage of digital video

Ultra Density Optical (UDO) is an optical disc format designed for high-density storage of high-definition video and data.

Blu-ray Optical disc format used for storing digital video and other digital data

The Blu-ray Disc (BD), often known simply as Blu-ray, is a digital optical disc storage format. It is designed to supersede the DVD format, and capable of storing several hours of high-definition video. The main application of Blu-ray is as a medium for video material such as feature films and for the physical distribution of video games for the PlayStation 3, PlayStation 4, PlayStation 5, Wii U, Xbox One, and Xbox Series X. The name "Blu-ray" refers to the blue laser used to read the disc, which allows information to be stored at a greater density than is possible with the longer-wavelength red laser used for DVDs.

Libburnia is a project that develops a collection of libraries and command-line tools for burning CDs, DVDs and Blu-ray media.

The Image Mastering Application Programming Interface, or IMAPI, is a component of Microsoft Windows operating system used for CD and DVD authoring and recording.

References

  1. "Zerras | ICEBOX". Zerras.com. Retrieved 4 April 2022.
  2. "Zerras | What Is WORM Or Write-Once, Read-Many Data Storage?". Zerras.com. 16 February 2022. Retrieved 4 April 2022.
  3. Mesnik, Bob (8 March 2016). "How to Comply With the Archiving Regulations Without Paying an Arm and a Leg". Kintronics.com. Retrieved 4 April 2022.
  4. Shilov, Anton. "Sony Releases Quad-Layer 128 GB BD-R XL Media". Anandtech.com. Retrieved 4 April 2022.
  5. "Hie Electronics Introduces Blu-ray Based TeraStack Solution for Green Data Storage". Tmcnet.com. Retrieved 4 April 2022.
  6. "Sony Group Portal - Sony Global - "Archival Disc" standard formulated for professional-use next-generation optical discs". Sony.com. Retrieved 4 April 2022.
  7. "Folder Spanning". Storagequest.com. Retrieved 26 July 2016.
  8. "Drive Letter Access". Storagequest.com. Retrieved 26 July 2016.
  9. "Network attached". Storagequest.com.
  10. Gallen, Dennis (11 March 2016). "The Difference Between Jukeboxes and CD/DVD Servers". Kintronics.com. Retrieved 4 April 2022.