Optoelectrofluidics

Last updated

Optoelectrofluidics, also known as optically induced electrohydrodynamics, refers to the study of the motions of particles or molecules and their interactions with optically-induced electric field and the surrounding fluid.

Contents

This concept includes electrothermal vortex, electrophoresis, dielectrophoresis, and electroosmosis induced by combination of optical and electrical energy or by optical-electrical energy transfer.

In 1995, an electrothermal vortices induced by a strong IR (infrared) laser projected into an electric field have been utilized to concentrate microparticles and molecules. In 2000, UV(ultraviolet) pattern projected onto ITO (indium tin oxide) electrode has been applied for patterning colloidal particles. Illumination of the ITO electrode by UV light results in a small increase in the current from the generation of electron-hole pairs at the ITO/water interface. In 2005, optoelectronic tweezers (OET), wherein a photoconductive material was utilized to induce electric field using the optical decrement of electrical resistance on a partially illuminated area, has been reported. After that, many researches in several view-points have been performed as below.

Display Devices

1. DMD(digital micromirror device)-based Optoelectronic Tweezers (OET) : P.Y. Chiou, et al., Nature436, pp.370-372 (2005)
2. Projector-based Image Dielectrophoresis (iDEP) : Y.-s. Lu, et al., Opt. Quant. Elec.37, pp.1385-1395 (2006)
3. LCD(liquid crystal display)-based Lab-on-a-Display (LOD) : W. Choi, et al., Microfluid. Nanofluid.3, pp.217-225 (2007)
4. Lens-integrated LCD-based System : H. Hwang, et al., Electrophoresis29, pp.1203-1212 (2008)

System Configuration

1. Interactive & Microscope-integrated System : H. Hwang, et al., Electrophoresis29, pp.1203-1212 (2008)
2. Double Photoconductive Layers : H. Hwang, et al., Appl. Phys. Lett.92, pp.024108 (2008)
3. Floating Electrode OET : S. Park, et al., Appl. Phys. Lett.92, pp.151101 (2008)
4. Integration with Electrowetting Device : G.J. Shah, et al., Lab Chip doi : 10.1039/b821508a (2009)
5. Optoelectrofluidic Fluorescence Microscopy: H. Hwang and J.-K. Park, Anal. Chem. doi : 10.1021/ac901047v (2009)

Target Materials

1. Cultured cells : A.T. Ohta, et al., IEEE J. Sel. Top. Quant. Elec.13, pp.237-240 (2007)
2. DNA  : M. Hoeb, et al., Biophys. J.93, pp.1032-1038 (2007)
3. Blood cell  : H. Hwang, et al., Electrophoresis29, pp.1203-1212 (2008)
4. Semiconducting nanowires : A. Jamshidi, et al., Nat. Photon.2, pp.86-89 (2008)
5. Swimming bacteria  : W. Choi, et al., Appl. Phys. Lett.93, pp.143901 (2008)
6. Oocyte  : H. Hwang, et al., Biomicrofluidics3, pp.014103 (2009)
7. Polysaccharide, Protein and Fluorophore  : H. Hwang and J.-K. Park, Anal. Chem. doi : 10.1021/ac901047v (2009)

Operating Principles

1. Dielectrophoresis (DEP) : Most of the researches above.
2. AC Electro-osmosis (ACEO) : P.-Y. Chiou, et al., J. Microelectromech. Syst.17, pp.525-531 (2008)
3. Electro-orientation :W. Choi, et al., Appl. Phys. Lett.93, pp.143901 (2008)
4. Electrothermal flow : A. Mizuno, et al., IEEE Trans. Ind. Appl.31,pp.464-468 (1995), S.J. Williams, A. Kumar and S. T. Wereley, Lab Chip8,pp.1879-1882 (2008)
5. Combination of AC Electrokinetics : H. Hwang and J.-K. Park, Lab Chip9,pp.199-206 (2009), H. Hwang and J.-K. Park, Anal. Chem. doi : 10.1021/ac901047v (2009)

6. Optically induced electrohydrodynamic instability (OEHI): Feifei Wang, Haibo Yu, Wenfeng Liang, Lianqing Liu, John D. Mai,Gwo-Bin Lee, Wen Jung Li,Microfluidics and Nanofluidics, Volume 16, Issue 6 , pp 1097–1106

Other Phenomena

1. Surface-Particle Interactions : H. Hwang, et al., Appl. Phys. Lett.92, pp.024108 (2008)
2. Particle-Particle Interactions : H. Hwang, et al., J. Phys. Chem. B32, pp. 9903–9908 (2008) doi : 10.1021/jp803596r

Applications

1. Microlens Array Fabrication : J.-Y. Huang, Y.-S. Lu and J. A. Teh, Opt. Express14, pp.10779-10784 (2006)
2. Microparticle Separation : H. Hwang and J.-K. Park, Lab Chip9,pp.199-206 (2009)
3. In vitro Fertilization : H. Hwang, et al., Biomicrofluidics3, pp. 014103 (2009)
4. Electroporation : J.K. Valley, et al., Lab Chip doi : 10.1039/b821678a (2009)
5. Local Chemical Concentration Control : H. Hwang and J.-K. Park, Anal. Chem. doi : 10.1021/ac901047v (2009)
6. Colloidal Assembly : H. Hwang, Y.-H. Park and J.-K. Park, Langmuir25, pp.6010-6014 (2009)

Research Groups

1. Ming C. Wu's Group : Integrated Photonics Laboratory, UC Berkeley, CA, USA
2. Je-Kyun Park's Group : NanoBiotech Laboratory, KAIST, KOREA
3. P.Y. Chiou's Group : Optoelectronic Biofluidics Laboratory, UCLA, CA, USA
4. Steve Wereley's Group : Microfluidics Laboratory, Purdue University, IN, USA
5. Aloke Kumar's Group : Kumar Biomicrofluidics Laboratory
6. Stuart William's Group :
7. Han-Sheng Chuang's Group :

Related Research Articles

<span class="mw-page-title-main">Induced-charge electrokinetics</span>

Induced-charge electrokinetics in physics is the electrically driven fluid flow and particle motion in a liquid electrolyte. Consider a metal particle in contact with an aqueous solution in a chamber/channel. If different voltages apply to the end of this chamber/channel, electric field will generate in this chamber/channel. This applied electric field passes through this metal particle and causes the free charges inside the particle migrate under the skin of particle. As a result of this migration, the negative charges move to the side which is close to the positive voltage while the positive charges move to the opposite side of the particle. These charges under the skin of the conducting particle attract the counter-ions of the aqueous solution; thus, the electric double layer (EDL) forms around the particle. The EDL sign on the surface of the conducting particle changes from positive to negative and the distribution of the charges varies along the particle geometry. Due to these variations, the EDL is non-uniform and has different signs. Thus, the induced zeta potential around the particle, and consequently slip velocity on the surface of the particle, vary as a function of the local electric field. Differences in magnitude and direction of slip velocity on the surface of the conducting particle effects the flow pattern around this particle and causes micro vortices. Yasaman Daghighi and Dongqing Li, for the first time, experimentally illustrated these induced vortices around a 1.2mm diameter carbon-steel sphere under the 40V/cm direct current (DC) external electric filed. Chenhui Peng et al. also experimentally showed the patterns of electro-osmotic flow around an Au sphere when alternating current (AC) is involved . Electrokinetics here refers to a branch of science related to the motion and reaction of charged particles to the applied electric filed and its effects on its environment. It is sometimes referred as non-linear electrokinetic phenomena as well.

References