Orbicule

Last updated

Orbicules (syn. Ubisch bodies, con-peito grains) are small acellular structures of sporopollenin that might occur on the inner tangential and radial walls of tapetal cells. The ornamentation of the orbicule surface often resembles that of the pollen sexine. Different hypotheses about their function have been proposed, including them just being a by-product of pollen wall sporopollenin synthesis.

Contents

Discovery

In 1865, Rosanoff published observations on anthers of Fabaceae species in which he noticed small granules on the inner locule wall that were resistant to concentrated sulphuric acid. [1] Von Ubisch and Kosmath independently provided the first records of species with and without orbicules and indicated that orbicules are restricted to a secretory tapetum type. [2] [3] Von Ubish concluded that orbicules are homologous with the pollen exine, as both showed the same reaction to chemicals and stains and they developed synchronously. [2] Both von Ubisch and Kosmath are considered as pioneers in orbicule research. [4]

Name

Rosanoff used the terms Körnchen und Tröpfchen, [1] while von Ubisch used Plättchen [2] and Kosmath used kutikulaähnliche Tapetumzellmembran. [3]

The term Ubisch body was introduced by Rowley. [5] This name was however later rejected by Heslop-Harrison because they were not discovered by von Ubisch. [6] In early Japanese literature, they are sometimes called con-peito grains. [4] However, the most commonly used name is orbicule, which was coined by Erdtman and colleagues. [7]

Morphology

Orbicules are morphologically variable. Their size ranges from < 1 μm to 15 μm, but they are usually smaller than 1 μm. [4] [8] [9] Within a single species, orbicule size may vary. [8] There is also variation in the shape of orbicule; they can be spherical, irregular, doughnut-shaped, etc. [8] The orbicular wall can be smooth or ornamented (e.g. with microgranules or microspines) and this ornamentation often shows a striking similarity with the exine ornamentation of the pollen grain. [8] [10] [11] Orbicules are resistant to acetolysis and react to histochemical staining in a similar way as the pollen exine, indicating that they are composed of sporopollenin. [4]

Development

Orbicules originate as lipid droplets (i.e. pro-orbicules) within the cytoplasm of tapetal cells, most likely from the rough endoplasmic reticulum. [4] [12] After exocytosis, the pro-orbicules nest on the tapetal plasmalemma and get a sporopollenin coat synchronously with the developing pollen exine. [13]

Tapetum

There is a positive correlation between the presence of orbicules and a parietal/secretory tapetum type, [2] [3] although species with parietal tapetal cells but lacking orbicules exist as well. [4] Parietal tapeta are the dominant type in land plants and occur in the extant ‘basal’ angiosperm groups and in most fossil taxa; it is therefore considered as the plesiomorphic condition in angiosperms. [14] Hence, the presence of orbicules represents the plesiomorphic character state for angiosperms. [4]

Distribution

Orbicules are present in 123 of 150 investigate angiosperm families. [9] [15] The presence or absence of orbicules is rather constant at the family level: only 24 angiosperm families have both positive and negative observations; the Rubiaceae family is one of them. [9]

Function

The function of orbicules remains enigmatic. In general, there are two views: either orbicules play an active role or they are just a by-product. [9]

Related Research Articles

<span class="mw-page-title-main">Dioscoreales</span> Order of lilioid monocotyledonous flowering plants

The Dioscoreales are an order of monocotyledonous flowering plants in modern classification systems, such as the Angiosperm Phylogeny Group and the Angiosperm Phylogeny Web. Within the monocots Dioscoreales are grouped in the lilioid monocots, where they are in a sister group relationship with the Pandanales. The Dioscoreales must contain the family Dioscoreaceae which includes the yam (Dioscorea), some species of which are an important food source in many regions. Older systems tended to place all lilioid monocots with reticulate veined leaves in Dioscoreales. As currently circumscribed by phylogenetic analysis using combined morphology and molecular methods, Dioscreales contains many reticulate veined vines in Dioscoraceae, it also includes the myco-heterotrophic Burmanniaceae and the autotrophic Nartheciaceae. The order consists of three families, 22 genera and about 850 species.

<span class="mw-page-title-main">Pollen</span> Grains containing the male gametophytes of seed plants

Pollen is a powdery substance produced by flowers of seed plants. It consists of pollen grains, which produce male gametes. Pollen grains have a hard coat made of sporopollenin that protects the gametophytes during the process of their movement from the stamens to the pistil of flowering plants, or from the male cone to the female cone of gymnosperms. If pollen lands on a compatible pistil or female cone, it germinates, producing a pollen tube that transfers the sperm to the ovule containing the female gametophyte. Individual pollen grains are small enough to require magnification to see detail. The study of pollen is called palynology and is highly useful in paleoecology, paleontology, archaeology, and forensics. Pollen in plants is used for transferring haploid male genetic material from the anther of a single flower to the stigma of another in cross-pollination. In a case of self-pollination, this process takes place from the anther of a flower to the stigma of the same flower.

<span class="mw-page-title-main">Rubiaceae</span> Family of flowering plants including coffee, madder and bedstraw

The Rubiaceae are a family of flowering plants, commonly known as the coffee, madder, or bedstraw family. It consists of terrestrial trees, shrubs, lianas, or herbs that are recognizable by simple, opposite leaves with interpetiolar stipules and sympetalous actinomorphic flowers. The family contains about 13,500 species in about 620 genera, which makes it the fourth-largest angiosperm family. Rubiaceae has a cosmopolitan distribution; however, the largest species diversity is concentrated in the tropics and subtropics. Economically important genera include Coffea, the source of coffee, Cinchona, the source of the antimalarial alkaloid quinine, ornamental cultivars, and historically some dye plants.

<span class="mw-page-title-main">Malvaceae</span> Family of flowering plants

Malvaceae, or the mallows, is a family of flowering plants estimated to contain 244 genera with 4225 known species. Well-known members of economic importance include okra, cotton, cacao, and durian. There are also some genera containing familiar ornamentals, such as Alcea (hollyhock), Malva (mallow), and Tilia. The genera with the largest numbers of species include Hibiscus, Pavonia, Sida, Ayenia, Dombeya, and Sterculia.

<span class="mw-page-title-main">Palynology</span> Study of microorganisms and microfossils composed acid-resistant, organic material

Palynology is the study of microorganisms and microscopic fragments of mega-organisms that are composed of acid-resistant organic material and occur in sediments, sedimentary rocks, and even some metasedimentary rocks. Palynomorphs are the microscopic, acid-resistant organic remains and debris produced by a wide variety plants, animals, and Protista that have existed since the late Proterozoic.

<span class="mw-page-title-main">Elaioplast</span> Part of a plant

Elaioplasts are one of the three possible forms of leucoplasts, sometimes broadly referred to as such. The main function of elaioplasts are synthesis and storage of fatty acids, terpenes, and other lipids, and they can be found in the embryonic leaves of oilseeds, citrus fruits, as well as the anthers of many flowering plants.

<span class="mw-page-title-main">Winteraceae</span> Family of flowering plants

Winteraceae is a primitive family of tropical trees and shrubs including 93 species in five genera. It is of particular interest because it is such a primitive angiosperm family, distantly related to Magnoliaceae, though it has a much more southern distribution. Plants in this family grow mostly in the southern hemisphere, and have been found in tropical to temperate climate regions of Malesia, Oceania, eastern Australia, New Zealand, Madagascar and the Neotropics, with most of the genera concentrated in Australasia and Malesia. The five genera, Takhtajania, Tasmannia, Drimys, Pseudowintera, and Zygogynum s.l. all have distinct geographic extant populations. Takhtajania includes a single species, T. perrieri, endemic only to Madagascar, Tasmannia has the largest distribution of genera in Winteraceae with species across the Philippines, Borneo, New Guinea, Eastern Australia, and Tasmannia, Drimys is found in the Neotropical realm, from southern Mexico to the subarctic forests of southern South America, Pseudowintera is found only in New Zealand, and Zygogynum has species in New Guinea and New Caledonia.

<span class="mw-page-title-main">Burmanniaceae</span> Family of flowering plants

Burmanniaceae is a family of flowering plants, consisting of 99 species of herbaceous plants in eight genera.

<span class="mw-page-title-main">Sporopollenin</span> Polymer found in plants

Sporopollenin is one of the most chemically inert biological polymers. It is a major component of the tough outer (exine) walls of plant spores and pollen grains. It is chemically very stable and is usually well preserved in soils and sediments. The exine layer is often intricately sculptured in species-specific patterns, allowing material recovered from lake sediments to provide useful information to palynologists about plant and fungal populations in the past. Sporopollenin has found uses in the field of paleoclimatology as well. Sporopollenin is also found in the cell walls of several taxa of green alga, including Phycopeltis and Chlorella.

<span class="mw-page-title-main">Aperture (botany)</span> Areas on the walls of a pollen grain, where the wall is thinner and/or softer

Apertures are areas on the walls of a pollen grain, where the wall is thinner and/or softer. For germination it is necessary that the pollen tube can reach out from the inside of the pollen grain and transport the sperm to the egg deep down in the pistil. The apertures are the places where the pollen tube is able to break through the pollen wall.

Microsporangia are sporangia that produce microspores that give rise to male gametophytes when they germinate. Microsporangia occur in all vascular plants that have heterosporic life cycles, such as seed plants, spike mosses and the aquatic fern genus not species Azolla. In gymnosperms and angiosperm anthers, the microsporangia produce microsporocytes, the microspore mother cells, which then produce four microspores through the process of meiosis. Microsporocytes are produced in the microsporangia of gymnosperm cones and the anthers of angiosperms. They are diploid microspore mother-cells, which then produce four haploid microspores through the process of meiosis. These become pollen grains, within which the microspores divide twice by mitosis to produce a very simple gametophyte.

<i>Trochodendron</i> Genus of flowing plants in the family Trochodendraceae

Trochodendron is a genus of flowering plants with one living species, Trochodendron aralioides, and six extinct species known from the fossil record. It was often considered the sole genus in the family Trochodendraceae, though botanists now also include the distinct genus Tetracentron in the family.

<span class="mw-page-title-main">Operculum (botany)</span> Botanical term for a protective covering, hood or lid

In botany, an operculum or calyptra is a cap-like structure in some flowering plants, mosses, and fungi. It is a covering, hood or lid, describing a feature in plant morphology.

<span class="mw-page-title-main">Velloziaceae</span> Family of flowering plants

Velloziaceae is a family of monocotyledonous flowering plants. The APG II system, of 2003, also recognizes this family, and assigns it to the order Pandanales.

<i>Archaeamphora</i> Fossil species of Cretaceous-aged flowering plant

Archaeamphora longicervia is a fossil plant species, the only member of the genus Archaeamphora. Fossil material assigned to this taxon originates from the Yixian Formation of northeastern China, dated to the Early Cretaceous.

Droserapollis is a genus of extinct plants in the family Droseraceae. It is a form taxon known only from fossil pollen.

Droserapites is a genus of extinct plants of somewhat uncertain droseracean affinity. It is a form taxon known only from fossil pollen.

<i>Pediastrum</i> Genus of algae

Pediastrum is a genus of green algae, in the family Hydrodictyaceae. It is a photoautotrophic, nonmotile coenobial green alga that inhabits freshwater environments.

<span class="mw-page-title-main">Tapetum (botany)</span> Specialised layer of cells the anther of flowering plants

The tapetum is a specialised layer of nutritive cells found within the anther, of flowering plants, where it is located between the sporangenous tissue and the anther wall. Tapetum is important for the nutrition and development of pollen grains, as well as a source of precursors for the pollen coat. The cells are usually bigger and normally have more than one nucleus per cell. As the sporogenous cells undergo mitosis, the nuclei of tapetal cells also divide. Sometimes, this mitosis is not normal due to which many cells of mature tapetum become multinucleate. Sometimes polyploidy and polyteny can also be seen. The unusually large nuclear constitution of the tapetum helps it in providing nutrients and regulatory molecules to the forming pollen grains. The following processes are responsible for this:

<span class="mw-page-title-main">Pentapetalae</span> Group of eudicots known as core eudicots

In phylogenetic nomenclature, the Pentapetalae are a large group of eudicots that were informally referred to as the "core eudicots" in some papers on angiosperm phylogenetics. They comprise an extremely large and diverse group that accounting about 65% of the species richness of the angiosperms, with wide variability in habit, morphology, chemistry, geographic distribution, and other attributes. Classical systematics, based solely on morphological information, was not able to recognize this group. In fact, the circumscription of the Pentapetalae as a clade is based on strong evidence obtained from DNA molecular analysis data.

References

  1. 1 2 Rosanoff S (1865). "Zur Kenntnis des Baues und der Entwicklungsgeschichte des Pollens der Mimoseae". Jahrbuch für wissenschaftliche Botanik. 4: 441–450.
  2. 1 2 3 4 von Ubisch G (1927). "Zur Entwicklungsgeschichte der Antheren". Planta. 3 (2–3): 490–495. doi:10.1007/BF01916485. S2CID   40848249.
  3. 1 2 3 Kosmath L (1927). "Studien über das Antherentapetum". Österreichische Botanische Zeitschrift. 76 (3): 235–241. doi:10.1007/BF01246254. S2CID   36194266.
  4. 1 2 3 4 5 6 7 Huysmans S, El-Ghazaly G, Smets E (1998). "Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types". The Botanical Review. 64 (3): 240–272. doi:10.1007/BF02856566. S2CID   38183780.
  5. Rowley JR (1962). "Nonhomogeneous sporopollenin in microspores of Poa annua L." Grana Palynologica. 3 (3): 3–19. doi: 10.1080/00173136209429101 .
  6. Heslop-Harrison, J (1971). "The pollen wall: structure and development". In Heslop-Harrison, J (ed.). Pollen development and physiology. London: Butterworths. pp. 75–98. ISBN   9780390437402.
  7. Erdtman G, Berglund B, Praglowski J (1961). "An introduction to a Scandinavian pollen flora". Grana Palynologica. 2 (3): 3–86. doi:10.1080/00173136109428945.
  8. 1 2 3 4 Verstraete B, Groeninckx I, Smets E, Huysmans S (2011). "Phylogenetic signal of orbicules at family level: Rubiaceae as case study". Taxon. 60 (3): 742–757. doi:10.1002/tax.603010.
  9. 1 2 3 4 Verstraete B, Moon HK, Smets E, Huysmans S (2014). "Orbicules in flowering plants: a phylogenetic perspective on their form and function". The Botanical Review. 80 (2): 107–134. doi:10.1007/s12229-014-9135-1. S2CID   255562584.
  10. Vinckier S, Smets E (2003). "Morphological and ultrastructural diversity of orbicules in Gentianaceae". Annals of Botany. 92 (5): 657–672. doi:10.1093/aob/mcg187. PMC   4244851 . PMID   14500324.
  11. Oak MK, Yang S, Choi G, Song JH (2022). "Systematic palynology in Korean Piperales with special focus on its exine surface ornamentation and orbicule morphology". Scientific Reports. 12 (1): 4142. doi:10.1038/s41598-022-08105-3. PMC   8907175 . PMID   35264735.
  12. El-Ghazaly G, Jensen WA (1986). "Studies of the development of wheat (Triticum aestivum) pollen. I. Formation of the pollen wall and ubisch bodies". Grana. 25: 1–29. doi: 10.1080/00173138609429929 .
  13. Christensen JE, Horner Jr HT, Lersten NR (1972). "Pollen wall and tapetal orbicular wall development in Sorghum bicolor (Gramineae)". American Journal of Botany. 59 (1): 43–58. doi:10.2307/2441229. JSTOR   2441229.
  14. Furness CA, Rudall PJ (2001). "The tapetum in basal angiosperms: early diversity". International Journal of Plant Sciences. 162 (2): 375–392. doi:10.1086/319580. S2CID   84338737.
  15. Moon HK (2018). "The phylogenetic potential of orbicules in angiosperms". Korean Journal Plant Taxonomy. 48: 9–23. doi: 10.11110/kjpt.2018.48.1.9 .