Oscillator (cellular automaton)

Last updated

In a cellular automaton, an oscillator is a pattern that returns to its original state, in the same orientation and position, after a finite number of generations. Thus the evolution of such a pattern repeats itself indefinitely. Depending on context, the term may also include spaceships as well.

Contents

The smallest number of generations it takes before the pattern returns to its initial condition is called the period of the oscillator. An oscillator with a period of 1 is usually called a still life , as such a pattern never changes. Sometimes, still lifes are not taken to be oscillators. Another common stipulation is that an oscillator must be finite.

Examples

In Conway's Game of Life, finite oscillators are known to exist for all periods. [1] [2] [3] Additionally, until July 2022, the only known examples for period 34 were considered trivial because they consisted of essentially separate components that oscillate at smaller periods. For instance, one can create a period 34 oscillator by placing period 2 and period 17 oscillators so that they do not interact. An oscillator is considered non-trivial if it contains at least one cell that oscillates at the necessary period.

Related Research Articles

<span class="mw-page-title-main">John Horton Conway</span> English mathematician (1937–2020)

John Horton Conway was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life.

Sprouts is an impartial paper-and-pencil game which can be analyzed for its mathematical properties. It was invented by mathematicians John Horton Conway and Michael S. Paterson at Cambridge University in the early 1960s. The setup is even simpler than the popular Dots and Boxes game, but gameplay develops much more artistically and organically.

<span class="mw-page-title-main">Conway's Game of Life</span> Two-dimensional cellular automaton devised by J. H. Conway in 1970

The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. It is Turing complete and can simulate a universal constructor or any other Turing machine.

<span class="mw-page-title-main">Cellular automaton</span> Discrete model studied in computer science

A cellular automaton is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.

<span class="mw-page-title-main">Langton's ant</span> Two-dimensional Turing machine with emergent behavior

Langton's ant is a two-dimensional universal Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. The universality of Langton's ant was proven in 2000. The idea has been generalized in several different ways, such as turmites which add more colors and more states.

<span class="mw-page-title-main">Sporadic group</span> Finite simple set type not classified as Lie, cyclic or alternating

In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups.

<span class="mw-page-title-main">Highlife (cellular automaton)</span> 2D cellular automaton similar to Conways Game of Life

Highlife is a cellular automaton similar to Conway's Game of Life. It was devised in 1994 by Nathan Thompson. It is a two-dimensional, two-state cellular automaton in the "Life family" and is described by the rule B36/S23; that is, a cell is born if it has 3 or 6 neighbors and survives if it has 2 or 3 neighbors. Because the rules of HighLife and Conway's Life are similar, many simple patterns in Conway's Life function identically in HighLife. More complicated engineered patterns for one rule, though, typically do not work in the other rule.

<span class="mw-page-title-main">Spaceship (cellular automaton)</span> Type of pattern that periodically changes position

In a cellular automaton, a finite pattern is called a spaceship if it reappears after a certain number of generations in the same orientation but in a different position. The smallest such number of generations is called the period of the spaceship.

In a cellular automaton, a puffer train, or simply puffer, is a finite pattern that moves itself across the "universe", leaving debris behind. Thus a pattern consisting of only a puffer will grow arbitrarily large over time. While both puffers and spaceships have periods and speeds, unlike puffers, spaceships do not leave debris behind.

A cellular automaton (CA) is Life-like if it meets the following criteria:

<span class="mw-page-title-main">Day and Night (cellular automaton)</span> 2D cellular automaton with black/white reversal symmetry

Day and Night is a cellular automaton rule in the same family as Game of Life. It is defined by rule notation B3678/S34678, meaning that a dead cell becomes live if it has 3, 6, 7, or 8 live neighbors, and a live cell remains alive (survives) if it has 3, 4, 6, 7, or 8 live neighbors, out of the eight neighbors in the Moore neighborhood. It was invented and named by Nathan Thompson in 1997, and investigated extensively by David I. Bell. The rule is given the name "Day & Night" because its on and off states are symmetric: if all the cells in the Universe are inverted, the future states are the inversions of the future states of the original pattern. A pattern in which the entire universe consists of off cells except for finitely many on cells can equivalently be represented by a pattern in which the whole universe is covered in on cells except for finitely many off cells in congruent locations.

<span class="mw-page-title-main">Glider (Conway's Game of Life)</span> Moving pattern of five live cells in Conways Game of Life

The glider is a pattern that travels across the board in Conway's Game of Life. It was first discovered by Richard K. Guy in 1969, while John Conway's group was attempting to track the evolution of the R-pentomino. Gliders are the smallest spaceships, and they travel diagonally at a speed of one cell every four generations, or . The glider is often produced from randomly generated starting configurations.

<span class="mw-page-title-main">Garden of Eden (cellular automaton)</span> Pattern that has no predecessors

In a cellular automaton, a Garden of Eden is a configuration that has no predecessor. It can be the initial configuration of the automaton but cannot arise in any other way. John Tukey named these configurations after the Garden of Eden in Abrahamic religions, which was created out of nowhere.

<span class="mw-page-title-main">Gun (cellular automaton)</span> Cellular automaton pattern that emits spaceships

In a cellular automaton, a gun is a pattern with a main part that repeats periodically, like an oscillator, and that also periodically emits spaceships. There are then two periods that may be considered: the period of the spaceship output, and the period of the gun itself, which is necessarily a multiple of the spaceship output's period. A gun whose period is larger than the period of the output is a pseudoperiod gun.

In Conway's Game of Life and other cellular automata, a still life is a pattern that does not change from one generation to the next. The term comes from the art world where a still life painting or photograph depicts an inanimate scene. In cellular automata, a still life can be thought of as an oscillator with unit period.

<span class="mw-page-title-main">Rule 90</span> Elementary cellular automaton

In the mathematical study of cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each of which can hold either a 0 or a 1 value. In each time step all values are simultaneously replaced by the exclusive or of their two neighboring values. Martin, Odlyzko & Wolfram (1984) call it "the simplest non-trivial cellular automaton", and it is described extensively in Stephen Wolfram's 2002 book A New Kind of Science.

<span class="mw-page-title-main">Brian's Brain</span> 2D cellular automaton devised by Brian Silverman

Brian's Brain is a cellular automaton devised by Brian Silverman, which is very similar to his Seeds rule.

<span class="mw-page-title-main">Life without Death</span> 2D cellular automaton similar to Conways Game of Life

Life without Death is a cellular automaton, similar to Conway's Game of Life and other Life-like cellular automaton rules. In this cellular automaton, an initial seed pattern grows according to the same rule as in Conway's Game of Life; however, unlike Life, patterns never shrink. The rule was originally considered by Toffoli & Margolus (1987), who called it "Inkspot"; it has also been called "Flakes". In contrast to the more complex patterns that exist within Conway's Game of Life, Life without Death commonly features still life patterns, in which no change occurs, and ladder patterns, that grow in a straight line.

<span class="mw-page-title-main">Phase resetting in neurons</span> Behavior observed in neurons

Phase resetting in neurons is a behavior observed in different biological oscillators and plays a role in creating neural synchronization as well as different processes within the body. Phase resetting in neurons is when the dynamical behavior of an oscillation is shifted. This occurs when a stimulus perturbs the phase within an oscillatory cycle and a change in period occurs. The periods of these oscillations can vary depending on the biological system, with examples such as: (1) neural responses can change within a millisecond to quickly relay information; (2) In cardiac and respiratory changes that occur throughout the day, could be within seconds; (3) circadian rhythms may vary throughout a series of days; (4) rhythms such as hibernation may have periods that are measured in years. This activity pattern of neurons is a phenomenon seen in various neural circuits throughout the body and is seen in single neuron models and within clusters of neurons. Many of these models utilize phase response (resetting) curves where the oscillation of a neuron is perturbed and the effect the perturbation has on the phase cycle of a neuron is measured.

<span class="mw-page-title-main">Critters (cellular automaton)</span>

Critters is a reversible block cellular automaton with similar dynamics to Conway's Game of Life, first described by Tommaso Toffoli and Norman Margolus in 1987.

References

  1. Brown, Nico; Cheng, Carson; Jacobi, Tanner; Karpovich, Maia; Merzenich, Matthias; Raucci, David; Riley, Mitchell (5 December 2023). "Conway's Game of Life is Omniperiodic". arXiv: 2312.02799 [math.CO].
  2. "LifeWiki:Game of Life Status page - LifeWiki". conwaylife.com. Retrieved 2023-12-16.
  3. Stone, Alex (2024-01-18). "Math's 'Game of Life' Reveals Long-Sought Repeating Patterns". Quanta Magazine. Retrieved 2024-01-18.