Puffer train

Last updated

In a cellular automaton, a puffer train, or simply puffer, is a finite pattern that moves itself across the "universe", leaving debris behind. Thus a pattern consisting of only a puffer will grow arbitrarily large over time. While both puffers and spaceships have periods and speeds, unlike puffers, spaceships do not leave debris behind.

The period of a puffer can be considered as the combination of two periods; the first is the period of the puffer itself, while the second is the apparent period of the pattern of debris produced. This is often the same as the period of the puffer, but sometimes is a factor of the period. A puffer for which the apparent period deduced from the debris is smaller than the period of the engine is a pseudoperiod puffer. Such puffers are typically produced by artificial means[ clarification needed ]. A true period puffer is one in which the period of the debris matches that of the puffer.

Puffers are divided into two classes, dirty puffers and clean puffers. While there is no precise distinction, a dirty puffer is one in which there is little apparent order in the debris (although the debris will still eventually be periodic). A clean puffer, conversely, has a small amount of debris that appears much more organized. A dirty puffer can sometimes be turned into a clean puffer by adding spaceships of the same velocity as the puffer that affect what debris results.

A puffer whose debris consists entirely of spaceships is called a rake.

In Conway's Game of Life

Stable puffer animation.gif
Stable "dirty" puffer train

The first known puffer, in Conway's Game of Life, was discovered by Bill Gosper; it is a dirty puffer, but eventually stabilizes to leave a pattern of debris that repeats every 140 generations. [1] Since then, many puffers have been discovered for this cellular automaton, with many different speeds and periods. [2] Puffers are significant for Life and related rules for three reasons: First, if they can be stabilized in such a way that they produce only gliders (that is, turned into rakes) they can be used as part of many more complex patterns such as breeders. Second, stabilizations of puffers that eliminate all of their output debris can be used to produce spaceships with arbitrarily large periods. And third, puffers can sometimes be tamed or combined to form spaceships with speeds that do not seem to be achievable in other ways; for instance, in Life, the switch engine is a puffer train discovered by Charles Corderman that moves diagonally at speed c/12 (one cell every 12 generations on average), and in 1991 Dean Hickerson showed how to combine several switch engines to form a c/12 spaceship that he called the Cordership. [3]

Related Research Articles

<span class="mw-page-title-main">Conway's Game of Life</span> Two-dimensional cellular automaton devised by J. H. Conway in 1970

The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. It is Turing complete and can simulate a universal constructor or any other Turing machine.

<span class="mw-page-title-main">Cellular automaton</span> Discrete model studied in computer science

A cellular automaton is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.

<span class="mw-page-title-main">Langton's ant</span> Two-dimensional Turing machine with emergent behavior

Langton's ant is a two-dimensional universal Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. The universality of Langton's ant was proven in 2000. The idea has been generalized in several different ways, such as turmites which add more colors and more states.

<span class="mw-page-title-main">Highlife (cellular automaton)</span> 2D cellular automaton similar to Conways Game of Life

Highlife is a cellular automaton similar to Conway's Game of Life. It was devised in 1994 by Nathan Thompson. It is a two-dimensional, two-state cellular automaton in the "Life family" and is described by the rule B36/S23; that is, a cell is born if it has 3 or 6 neighbors and survives if it has 2 or 3 neighbors. Because the rules of HighLife and Conway's Life are similar, many simple patterns in Conway's Life function identically in HighLife. More complicated engineered patterns for one rule, though, typically do not work in the other rule.

<span class="mw-page-title-main">Spaceship (cellular automaton)</span> Type of pattern that periodically changes position

In a cellular automaton, a finite pattern is called a spaceship if it reappears after a certain number of generations in the same orientation but in a different position. The smallest such number of generations is called the period of the spaceship.

A cellular automaton (CA) is Life-like if it meets the following criteria:

In a cellular automaton, an oscillator is a pattern that returns to its original state, in the same orientation and position, after a finite number of generations. Thus the evolution of such a pattern repeats itself indefinitely. Depending on context, the term may also include spaceships as well.

<span class="mw-page-title-main">Seeds (cellular automaton)</span> 2D cellular automaton similar to Conways Game of Life

Seeds is a cellular automaton in the same family as the Game of Life, initially investigated by Brian Silverman and named by Mirek Wójtowicz. It consists of an infinite two-dimensional grid of cells, each of which may be in one of two states: on or off. Each cell is considered to have eight neighbors, as in Life. In each time step, a cell turns on or is "born" if it was off or "dead" but had exactly two neighbors that were on; all other cells turn off. Thus, in the notation describing the family of cellular automata containing Life, it is described by the rule B2/S.

<span class="mw-page-title-main">Hashlife</span> Algorithm for speeding up cellular automaton simulations

Hashlife is a memoized algorithm for computing the long-term fate of a given starting configuration in Conway's Game of Life and related cellular automata, much more quickly than would be possible using alternative algorithms that simulate each time step of each cell of the automaton. The algorithm was first described by Bill Gosper in the early 1980s while he was engaged in research at the Xerox Palo Alto Research Center. Hashlife was originally implemented on Symbolics Lisp machines with the aid of the Flavors extension.

<span class="mw-page-title-main">Glider (Conway's Game of Life)</span> Moving pattern of five live cells in Conways Game of Life

The glider is a pattern that travels across the board in Conway's Game of Life. It was first discovered by Richard K. Guy in 1969, while John Conway's group was attempting to track the evolution of the R-pentomino. Gliders are the smallest spaceships, and they travel diagonally at a speed of one cell every four generations, or . The glider is often produced from randomly generated starting configurations.

<span class="mw-page-title-main">Gun (cellular automaton)</span> Cellular automaton pattern that emits spaceships

In a cellular automaton, a gun is a pattern with a main part that repeats periodically, like an oscillator, and that also periodically emits spaceships. There are then two periods that may be considered: the period of the spaceship output, and the period of the gun itself, which is necessarily a multiple of the spaceship output's period. A gun whose period is larger than the period of the output is a pseudoperiod gun.

In Conway's Game of Life and other cellular automata, a still life is a pattern that does not change from one generation to the next. The term comes from the art world where a still life painting or photograph depicts an inanimate scene. In cellular automata, a still life can be thought of as an oscillator with unit period.

<span class="mw-page-title-main">Cyclic cellular automaton</span>

A cyclic cellular automaton is a kind of cellular automaton rule developed by David Griffeath and studied by several other cellular automaton researchers. In this system, each cell remains unchanged until some neighboring cell has a modular value exactly one unit larger than that of the cell itself, at which point it copies its neighbor's value. One-dimensional cyclic cellular automata can be interpreted as systems of interacting particles, while cyclic cellular automata in higher dimensions exhibit complex spiraling behavior.

<span class="mw-page-title-main">Rake (cellular automaton)</span> Type of moving pattern which periodically produces spaceships

A rake, in the lexicon of cellular automata, is a type of puffer train, which is an automaton that leaves behind a trail of debris. In the case of a rake, however, the debris left behind is a stream of spaceships, which are automata that "travel" by looping through a short series of iterations and end up in a new location after each cycle returns to the original configuration.

<span class="mw-page-title-main">Rule 184</span> Elementary cellular automaton

Rule 184 is a one-dimensional binary cellular automaton rule, notable for solving the majority problem as well as for its ability to simultaneously describe several, seemingly quite different, particle systems:

<span class="mw-page-title-main">Rule 90</span> Elementary cellular automaton

In the mathematical study of cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each of which can hold either a 0 or a 1 value. In each time step all values are simultaneously replaced by the XOR of their two neighboring values. Martin, Odlyzko & Wolfram (1984) call it "the simplest non-trivial cellular automaton", and it is described extensively in Stephen Wolfram's 2002 book A New Kind of Science.

<span class="mw-page-title-main">Spark (cellular automaton)</span> Type of pattern which temporarily appears at the edge of a larger pattern

In Conway's Game of Life and similar cellular automaton rules, a spark is a small collection of live cells that appears at the edge of some larger pattern such as a spaceship or oscillator, then quickly dies off.

<span class="mw-page-title-main">Brian's Brain</span> 2D cellular automaton devised by Brian Silverman

Brian's Brain is a cellular automaton devised by Brian Silverman, which is very similar to his Seeds rule.

<span class="mw-page-title-main">Life without Death</span> 2D cellular automaton similar to Conways Game of Life

Life without Death is a cellular automaton, similar to Conway's Game of Life and other Life-like cellular automaton rules. In this cellular automaton, an initial seed pattern grows according to the same rule as in Conway's Game of Life; however, unlike Life, patterns never shrink. The rule was originally considered by Toffoli & Margolus (1987), who called it "Inkspot"; it has also been called "Flakes". In contrast to the more complex patterns that exist within Conway's Game of Life, Life without Death commonly features still life patterns, in which no change occurs, and ladder patterns, that grow in a straight line.

<span class="mw-page-title-main">Critters (cellular automaton)</span>

Critters is a reversible block cellular automaton with similar dynamics to Conway's Game of Life, first described by Tommaso Toffoli and Norman Margolus in 1987.

References

  1. Gardner, M. (1983). "The Game of Life, Part III". Wheels, Life and Other Mathematical Amusements . W.H. Freeman. p. 247. Gosper's puffer also appears in the cover art for this book.
  2. Jason Summers' Life status page.
  3. Corderships and puffers, D. Hickerson Archived 2007-04-12 at the Wayback Machine . Cordership, E. Weisstein. Cordership, Lifepage.