Otto calculus

Last updated

The Otto calculus (also known as Otto's calculus) is a mathematical system for studying diffusion equations that views the space of probability measures as an infinite dimensional Riemannian manifold by interpreting the Wasserstein distance as if it was a Riemannian metric. [1] [2]

It is named after Felix Otto, [1] who developed it in the late 1990s and published it in a 2001 paper on the geometry of dissipative evolution equations. [3] [4] Otto acknowledges inspiration from earlier work by David Kinderlehrer and conversations with Robert McCann and Cédric Villani. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

<span class="mw-page-title-main">Mathematical analysis</span> Branch of mathematics

Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

<span class="mw-page-title-main">Ricci flow</span> Partial differential equation

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

In mathematics, Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff distance.

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician (1943–2024)

Richard Streit Hamilton was an American mathematician who served as the Davies Professor of Mathematics at Columbia University.

<span class="mw-page-title-main">Mikhael Gromov (mathematician)</span> Russian-French mathematician

Mikhael Leonidovich Gromov is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University.

<span class="mw-page-title-main">Ennio De Giorgi</span> Italian mathematician

Ennio De Giorgi was an Italian mathematician who worked on partial differential equations and the foundations of mathematics.

<span class="mw-page-title-main">Geometric analysis</span> Field of higher mathematics

Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.

Graduate Texts in Mathematics (GTM) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size. The GTM series is easily identified by a white band at the top of the book.

<span class="mw-page-title-main">Thierry Aubin</span> French mathematician

Thierry Aubin was a French mathematician who worked at the Centre de Mathématiques de Jussieu, and was a leading expert on Riemannian geometry and non-linear partial differential equations. His fundamental contributions to the theory of the Yamabe equation led, in conjunction with results of Trudinger and Schoen, to a proof of the Yamabe Conjecture: every compact Riemannian manifold can be conformally rescaled to produce a manifold of constant scalar curvature. Along with Yau, he also showed that Kähler manifolds with negative first Chern classes always admit Kähler–Einstein metrics, a result closely related to the Calabi conjecture. The latter result, established by Yau, provides the largest class of known examples of compact Einstein manifolds. Aubin was the first mathematician to propose the Cartan–Hadamard conjecture.

<span class="mw-page-title-main">Jerry Kazdan</span> American mathematician

Jerry Lawrence Kazdan is an American mathematician noted for his work in differential geometry and the study of partial differential equations. His contributions include the Berger–Kazdan comparison theorem, which was a key step in the proof of the Blaschke conjecture and the classification of Wiedersehen manifolds. His best-known work, done in collaboration with Frank Warner, dealt with the problem of prescribing the scalar curvature of a Riemannian metric.

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

<span class="mw-page-title-main">Robert Bryant (mathematician)</span> American mathematician (born 1953)

Robert Leamon Bryant is an American mathematician. He works at Duke University and specializes in differential geometry.

<span class="mw-page-title-main">John Lott (mathematician)</span> American mathematician

John William Lott is a professor of Mathematics at the University of California, Berkeley. He is known for contributions to differential geometry.

<span class="mw-page-title-main">Luigi Ambrosio</span> Italian mathematician

Luigi Ambrosio is a professor at Scuola Normale Superiore in Pisa, Italy. His main fields of research are the calculus of variations and geometric measure theory.

<span class="mw-page-title-main">Alessio Figalli</span> Italian mathematician (born 1984)

Alessio Figalli is an Italian mathematician working primarily on calculus of variations and partial differential equations.

<span class="mw-page-title-main">Aaron Naber</span>

Aaron Naber is an American mathematician.

References

  1. 1 2 Ambrosio, L. "Calculus and heat flow in metric measure spaces and spaces with Riemannian curvature bounds from below" (PDF).
  2. Ambrosio, Luigi; Brué, Elia; Semola, Daniele (2021), Ambrosio, Luigi; Brué, Elia; Semola, Daniele (eds.), "Lecture 18: An Introduction to Otto's Calculus", Lectures on Optimal Transport, UNITEXT, Cham: Springer International Publishing, pp. 211–228, doi:10.1007/978-3-030-72162-6_18, ISBN   978-3-030-72162-6, S2CID   238959458 , retrieved 2023-12-20
  3. Karatzas, Ioannis; Schachermayer, Walter; Tschiderer, Bertram (21 November 2018). "Applying Itô calculus to Otto calculus" (PDF).
  4. 1 2 Otto, Felix (2001-01-31). "The geometry of dissipative evolution equations: the porous medium equation". Communications in Partial Differential Equations. 26 (1–2): 101–174. doi:10.1081/PDE-100002243. ISSN   0360-5302. S2CID   14799125.