Overlapping generations

Last updated

In population genetics overlapping generations refers to mating systems where more than one breeding generation is present at any one time. In systems where this is not the case there are non-overlapping generations (or discrete generations) in which every breeding generation lasts just one breeding season. If the adults reproduce over multiple breeding seasons the species is considered to have overlapping generations. Examples of species which have overlapping generations are many mammals, including humans, and many invertebrates in seasonal environments. [1] [ self-published source? ] Examples of species which consist of non-overlapping generations are annual plants and several insect species.

Contents

Non-overlapping generations is one of the characteristics that needs to be met in the Hardy–Weinberg model for evolution to occur. This is a very restrictive and unrealistic assumption, but one that is difficult to dispose of. [2] [ self-published source? ]

Overlapping versus non-overlapping generations

In population genetics models, such as the Hardy–Weinberg model, it is assumed that species have no overlapping generations. In nature, however, many species do have overlapping generations. The overlapping generations are considered the norm rather than the exception.

Overlapping generations are found in species that live for many years, and reproduce many times. Many birds, for instance, have new nests every (couple of) year(s). Therefore, the offspring will, after they have matured, also have their own nests of offspring while the parent generation could be breeding again as well. An advantage of overlapping generations can be found in the different experience levels of generations in a population. The younger age group will be able to acquire social information from the older and more experienced age groups. [3] Overlapping generations can, similarly, promote altruistic behaviour. [4]

Non-overlapping generations are found in species in which the adult generation dies after one breeding season. If a species for instance can only survive winter in the juvenile state the species will automatically consist of non-overlapping generations.

The bee Amegilla dawsoni, an example of a species with non-overlapping generations Amegilla dawsoni.jpg
The bee Amegilla dawsoni, an example of a species with non-overlapping generations

The group of species lacking overlapping generations mostly consists of univoltine insects, and some annual plants. One example of univoltine insects, only breeding once a year, is Dawson's burrowing bee, Amegilla dawsoni . [5]

Although annual plants die after one season, not all annual plants truly lack overlapping generations. Many annual plants have seed banks containing dormant seeds that remain dormant for at least one year. This makes overlapping generations possible in annual plants. [6]

N.B domestication of annual plants has led to a reduction of seed dormancy. These domesticated annual plants, therefore, have non-overlapping generations. [7]

Effects of overlapping generations

Genetic diversity

Whether a species has overlapping generations or not can influence the genetic diversity in the new generation. Changes in the genetic variance in populations due to genetic drift have been shown to be twice as great when there are overlapping generations as opposed to when generations do not overlap. [8]

Assumptions in population genetic models

Effective population size is an essential concept in evolutionary biology and notoriously hard to estimate. In models estimating this figure, it is often assumed that the species has non-overlapping generations. This can bias the estimate of the effective population size, because temporal fluctuations in allele frequencies follow complicated patterns when generations overlap. [9]

In the Neutral theory of molecular evolution, [10] it is shown that the rate of evolution (substitution rate) in neutral genes is not influenced by fluctuations in population size. This, however, is only true for species having discrete generations. In this case, the substitution rate is equal to the mutation rate. When generation overlapping is incorporated in this model, the substitution rate does change with population size fluctuations. The substitution rate increases when the population size transits from small to large, with a high survival probability and when the population size transits from large to small, with a low survival probability. [11]

Experimentation

In many experiments species are assumed to only consist of non-overlapping generations. For instance, when a scientist wants to look at genetic mutations in a strain of bacteria. He will look at all the offspring (F1) of the current generation (P). For a further look into genetic mutations in the strain he will then look at the next generation (F2) which consists only of offspring from generation F1 while the first generation P will not be used in the experiment any longer.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Hybrid (biology)</span> Offspring of cross-species reproduction

In biology, a hybrid is the offspring resulting from combining the qualities of two organisms of different breeds, varieties, species or genera through sexual reproduction. Generally, it means that each cell has genetic material from two different organisms, whereas an individual where some cells are derived from a different organism is called a chimera. Hybrids are not always intermediates between their parents, but can show hybrid vigor, sometimes growing larger or taller than either parent. The concept of a hybrid is interpreted differently in animal and plant breeding, where there is interest in the individual parentage. In genetics, attention is focused on the numbers of chromosomes. In taxonomy, a key question is how closely related the parent species are.

<span class="mw-page-title-main">Inbreeding</span> Reproduction by closely related organisms

Inbreeding is the production of offspring from the mating or breeding of individuals or organisms that are closely related genetically. By analogy, the term is used in human reproduction, but more commonly refers to the genetic disorders and other consequences that may arise from expression of deleterious recessive traits resulting from incestuous sexual relationships and consanguinity. Animals avoid incest only rarely.

<span class="mw-page-title-main">Genetic drift</span> Concept in genetics

Genetic drift, also known as allelic drift or the Wright effect, is the change in the frequency of an existing gene variant (allele) in a population due to random chance.

Small populations can behave differently from larger populations. They are often the result of population bottlenecks from larger populations, leading to loss of heterozygosity and reduced genetic diversity and loss or fixation of alleles and shifts in allele frequencies. A small population is then more susceptible to demographic and genetic stochastic events, which can impact the long-term survival of the population. Therefore, small populations are often considered at risk of endangerment or extinction, and are often of conservation concern.

<span class="mw-page-title-main">Domestication</span> Selective breeding of plants and animals to serve humans

Domestication is a multi-generational relationship between humans and other organisms, where humans take control over their reproduction and care to have a steady supply of the organisms' resources. It can be argued that domestication is a form of mutualism, where both humans and the organisms are benefited. The domestication of plants and animals by humans was a major cultural innovation ranked in importance with the conquest of fire, the manufacturing of tools, and the development of verbal language.

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, the evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

<span class="mw-page-title-main">Neutral theory of molecular evolution</span>

The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The theory applies only for evolution at the molecular level, and is compatible with phenotypic evolution being shaped by natural selection as postulated by Charles Darwin. The neutral theory allows for the possibility that most mutations are deleterious, but holds that because these are rapidly removed by natural selection, they do not make significant contributions to variation within and between species at the molecular level. A neutral mutation is one that does not affect an organism's ability to survive and reproduce. The neutral theory assumes that most mutations that are not deleterious are neutral rather than beneficial. Because only a fraction of gametes are sampled in each generation of a species, the neutral theory suggests that a mutant allele can arise within a population and reach fixation by chance, rather than by selective advantage.

<span class="mw-page-title-main">Population bottleneck</span> Effects of a sharp reduction in numbers on the diversity and robustness of a population

A population bottleneck or genetic bottleneck is a sharp reduction in the size of a population due to environmental events such as famines, earthquakes, floods, fires, disease, and droughts; or human activities such as specicide, widespread violence or intentional culling, and human population planning. Such events can reduce the variation in the gene pool of a population; thereafter, a smaller population, with a smaller genetic diversity, remains to pass on genes to future generations of offspring through sexual reproduction. Genetic diversity remains lower, increasing only when gene flow from another population occurs or very slowly increasing with time as random mutations occur. This results in a reduction in the robustness of the population and in its ability to adapt to and survive selecting environmental changes, such as climate change or a shift in available resources. Alternatively, if survivors of the bottleneck are the individuals with the greatest genetic fitness, the frequency of the fitter genes within the gene pool is increased, while the pool itself is reduced.

<span class="mw-page-title-main">Selective breeding</span> Breeding for desired characteristics

Selective breeding is the process by which humans use animal breeding and plant breeding to selectively develop particular phenotypic traits (characteristics) by choosing which typically animal or plant males and females will sexually reproduce and have offspring together. Domesticated animals are known as breeds, normally bred by a professional breeder, while domesticated plants are known as varieties, cultigens, cultivars, or breeds. Two purebred animals of different breeds produce a crossbreed, and crossbred plants are called hybrids. Flowers, vegetables and fruit-trees may be bred by amateurs and commercial or non-commercial professionals: major crops are usually the provenance of the professionals.

Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.

<span class="mw-page-title-main">Genetic diversity</span> Total number of genetic characteristics in a species

Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is distinguished from genetic variability, which describes the tendency of genetic characteristics to vary.

<span class="mw-page-title-main">Evolutionary biology</span> Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution holds that all species are related and gradually change over generations. In a population, the genetic variations affect the phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring. Some examples of evolution in species over many generations are the peppered moth and flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology.

The effective population size (Ne) is a number that, in some simplified scenarios, corresponds to the number of breeding individuals in the population. More generally, Ne is the number of individuals that an idealised population would need to have in order for some specified quantity of interest (typically change of genetic diversity or inbreeding rates) to be the same as in the real population. Idealised populations are based on unrealistic but convenient simplifications such as random mating, simultaneous birth of each new generation, constant population size, and equal numbers of children per parent. For most quantities of interest and most real populations, the effective population size Ne is usually smaller than the census population size N of a real population. The same population may have multiple effective population sizes, for different properties of interest, including for different genetic loci.

<span class="mw-page-title-main">Conservation genetics</span> Interdisciplinary study of extinction avoidance

Conservation genetics is an interdisciplinary subfield of population genetics that aims to understand the dynamics of genes in a population for the purpose of natural resource management and extinction prevention. Researchers involved in conservation genetics come from a variety of fields including population genetics, natural resources, molecular ecology, biology, evolutionary biology, and systematics. Genetic diversity is one of the three fundamental measures of biodiversity, so it is an important consideration in the wider field of conservation biology.

<span class="mw-page-title-main">Domestication of animals</span> Overview of animal domestication

The domestication of animals is the mutual relationship between non-human animals and the humans who have influence on their care and reproduction.

<span class="mw-page-title-main">Introgression</span> Transfer of genetic material from one species to another

Introgression, also known as introgressive hybridization, in genetics is the transfer of genetic material from one species into the gene pool of another by the repeated backcrossing of an interspecific hybrid with one of its parent species. Introgression is a long-term process, even when artificial; it may take many hybrid generations before significant backcrossing occurs. This process is distinct from most forms of gene flow in that it occurs between two populations of different species, rather than two populations of the same species.

Neutral mutations are changes in DNA sequence that are neither beneficial nor detrimental to the ability of an organism to survive and reproduce. In population genetics, mutations in which natural selection does not affect the spread of the mutation in a species are termed neutral mutations. Neutral mutations that are inheritable and not linked to any genes under selection will be lost or will replace all other alleles of the gene. That loss or fixation of the gene proceeds based on random sampling known as genetic drift. A neutral mutation that is in linkage disequilibrium with other alleles that are under selection may proceed to loss or fixation via genetic hitchhiking and/or background selection.

In population genetics, fixation is the change in a gene pool from a situation where there exists at least two variants of a particular gene (allele) in a given population to a situation where only one of the alleles remains. That is, the allele becomes fixed. In the absence of mutation or heterozygote advantage, any allele must eventually be lost completely from the population or fixed. Whether a gene will ultimately be lost or fixed is dependent on selection coefficients and chance fluctuations in allelic proportions. Fixation can refer to a gene in general or particular nucleotide position in the DNA chain (locus).

The nearly neutral theory of molecular evolution is a modification of the neutral theory of molecular evolution that accounts for the fact that not all mutations are either so deleterious such that they can be ignored, or else neutral. Slightly deleterious mutations are reliably purged only when their selection coefficient are greater than one divided by the effective population size. In larger populations, a higher proportion of mutations exceed this threshold for which genetic drift cannot overpower selection, leading to fewer fixation events and so slower molecular evolution.

<span class="mw-page-title-main">Annual vs. perennial plant evolution</span>

Annuality and perenniality represent major life history strategies within plant lineages. These traits can shift from one to another over both macroevolutionary and microevolutionary timescales. While perenniality and annuality are often described as discrete either-or traits, they often occur in a continuous spectrum. The complex history of switches between annual and perennial habit involve both natural and artificial causes, and studies of this fluctuation have importance to sustainable agriculture.

References

  1. Olsen, Bruce D. (2009). Understanding Biology Through Evolution (4th ed.). Lulu.com. p. 179. ISBN   978-0-557-09539-1.
  2. "Overlapping Generations". cruel.org. Retrieved 2017-09-07.
  3. Dukas, R. (2010). "Insect Social Learning". Encyclopedia of Animal Behavior. pp. 176–179. doi:10.1016/B978-0-08-045337-8.00058-9. ISBN   978-0-08-045337-8.
  4. Taylor, Peter D.; Irwin, Andrew J. (August 2000). "Overlapping Generations Can Promote Altruistic Behavior". Evolution. 54 (4): 1135–1141. doi:10.1111/j.0014-3820.2000.tb00549.x. PMID   11005283. S2CID   34828246.
  5. Aalberg Haugen, I. M.; Berger, D.; Gotthard, K. (July 2012). "The evolution of alternative developmental pathways: footprints of selection on life-history traits in a butterfly". Journal of Evolutionary Biology. 25 (7): 1377–1388. doi: 10.1111/j.1420-9101.2012.02525.x . PMID   22591181. S2CID   24978317.
  6. Cohen, Dan (1993). "Fitness in Random Environments". Adaptation in Stochastic Environments. Lecture Notes in Biomathematics. Vol. 98. pp. 8–25. doi:10.1007/978-3-642-51483-8_2. ISBN   978-3-540-56681-6.
  7. Fernández-Marín, Beatriz; Milla, Rubén; Martín-Robles, Nieves; Arc, Erwann; Kranner, Ilse; Becerril, José María; García-Plazaola, José Ignacio (December 2014). "Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts". BMC Plant Biology. 14 (1): 1599. doi:10.1186/s12870-014-0385-1. PMC   4302433 . PMID   25526984.
  8. Rogers, Alex; Prügel-Bennett, Adam (March 2000). "Evolving Populations with Overlapping Generations". Theoretical Population Biology. 57 (2): 121–129. CiteSeerX   10.1.1.28.959 . doi:10.1006/tpbi.1999.1446. PMID   10792977.
  9. Jorde, P. E.; Ryman, N. (February 1995). "Temporal Allele Frequency Change and Estimation of Effective Size in Populations with Overlapping Generations". Genetics. 139 (2): 1077–1090. doi:10.1093/genetics/139.2.1077. PMC   1206358 . PMID   7713410.
  10. Kimura, Motoo (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press. p. ix. ISBN   978-0-521-31793-1.
  11. Balloux, François; Lehmann, Laurent (February 2012). "Substitution Rates at Neutral Genes Depend on Population Size Under Fluctuating Demography and Overlapping Generations". Evolution. 66 (2): 605–611. doi: 10.1111/j.1558-5646.2011.01458.x . PMID   22276552.