P-compact group

Last updated

In mathematics, in particular algebraic topology, a p-compact group is a homotopical version of a compact Lie group, but with all the local structure concentrated at a single prime p. This concept was introduced in Dwyer & Wilkerson (1994), making precise earlier notions of a mod p finite loop space. A p-compact group has many Lie-like properties like maximal tori and Weyl groups, which are defined purely homotopically in terms of the classifying space, but with the important difference that the Weyl group, rather than being a finite reflection group over the integers, is now a finite p-adic reflection group. They admit a classification in terms of root data, which mirrors the classification of compact Lie groups, but with the integers replaced by the p-adic integers.

Contents

Definition

A p-compact group is a pointed space BG, with is local with respect to mod p homology, and such the pointed loop space G = ΩBG has finite mod p homology. One sometimes also refer to the p-compact group by G, but then one needs to keep in mind that the loop space structure is part of the data (which then allows one to recover BG).

A p-compact group is said to be connected if G is a connected space (in general the group of components of G will be a finite p-group). The rank of a p-compact group is the rank of its maximal torus.

Examples

Classification

The classification of p-compact groups from Andersen & Grodal (2009) states that there is a 1-1 correspondence between connected p-compact groups, up to homotopy equivalence, and root data over the p-adic integers, up to isomorphism. This is analogous to the classical classification of connected compact Lie groups, with the p-adic integers replacing the rational integers.

It follows from the classification that any p-compact group can be written as BG = BH × BK where BH is the p-completion of a compact connected Lie group and BK is finite direct product of simple exotic p-compact groups i.e., simple p-compact groups whose Weyl group group is not a -reflection groups. Simple exotic p-compact groups are again in 1-1-correspondence with irreducible complex reflection groups whose character field can be embedded in , but is not .

For instance, when p=2 this implies that every connected 2-compact group can be written BG = BH × BDI(4)s, where BH is the 2-completion of the classifying space of a connected compact Lie group, and BDI(4)s denotes s copies of the "Dwyer-Wilkerson 2-compact group" BDI(4) of rank 3, constructed in Dwyer & Wilkerson (1993) with Weyl group corresponding to group number 24 in the Shepard-Todd enumeration of complex reflection groups. For p=3 a similar statement holds but the new exotic 3-compact group is now group number 12 on the Shepard-Todd list, of rank 2. For primes greater than 3, family 2 on the Shepard-Todd list will contain infinitely many exotic p-compact groups.

Some consequences of the classification

A finite loop space is a pointed space BG such that the loop space ΩBG is homotopy equivalent to a finite CW-complex. The classification of connected p-compact groups implies a classification of connected finite loop spaces: Given a connected p-compact group for each prime, all with the same rational type, there is an explicit double coset space of possible connected finite loop spaces with p-completion the give p-compact groups. As connected p-compact groups are classified combinatorially, this implies a classification of connected loop spaces as well.

Using the classification, one can identify the compact Lie groups inside finite loop spaces, giving a homotopical characterisation of compact connected Lie groups: They are exactly those finite loop spaces that admit an integral maximal torus; this was the so-called maximal torus conjecture. (See Andersen & Grodal (2009) and Grodal (2010).)

The classification also implies a classification of which graded polynomial rings can occur as the cohomology ring of a space, the so-called Steenrod problem. (See Andersen & Grodal (2008).)

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right. Formally, given a prime number p, a p-adic number can be defined as a series

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

In several mathematical areas, including harmonic analysis, topology, and number theory, locally compact abelian groups are abelian groups which have a particularly convenient topology on them. For example, the group of integers, or the real numbers or the circle are locally compact abelian groups.

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

<span class="mw-page-title-main">Reductive group</span>

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

In mathematics, a pro-p group is a profinite group such that for any open normal subgroup the quotient group is a p-group. Note that, as profinite groups are compact, the open subgroups are exactly the closed subgroups of finite index, so that the discrete quotient group is always finite.

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan (1977) and Daniel Quillen (1969). This simplification of homotopy theory makes certain calculations much easier.

In topology, a branch of mathematics, a string group is an infinite-dimensional group introduced by Stolz (1996) as a -connected cover of a spin group. A string manifold is a manifold with a lifting of its frame bundle to a string group bundle. This means that in addition to being able to define holonomy along paths, one can also define holonomies for surfaces going between strings. There is a short exact sequence of topological groups

In mathematics, a profinite integer is an element of the ring

This is a glossary of properties and concepts in algebraic topology in mathematics.

In general topology and number theory, branches of mathematics, one can define various topologies on the set of integers or the set of positive integers by taking as a base a suitable collection of arithmetic progressions, sequences of the form or The open sets will then be unions of arithmetic progressions in the collection. Three examples are the Furstenberg topology on , and the Golomb topology and the Kirch topology on . Precise definitions are given below.

References