PDCP

Last updated

PDCP is an abbreviation for Packet Data Convergence Protocol. This protocol is specified by 3GPP in TS 25.323 [1] for UMTS, TS 36.323 [2] for LTE and TS 38.323 [3] for 5G New Radio (NR). The PDCP is located in the Radio Protocol Stack in the UMTS/LTE/5G Air interface on top of the RLC layer.

PDCP provides its services to the RRC and user plane upper layers, e.g. IP at the UE or to the relay at the base station. The following services are provided by PDCP to upper layers:

The header compression technique can be based on either IP header compression (RFC 2507) or Robust Header Compression (RFC 3095). If PDCP is configured for No Compression it will send the IP Packets without compression; otherwise it will compress the packets according to its configuration by upper layer and attach a PDCP header and send the packet.

Different header formats are defined, dependent on the type of data to be transported. In LTE, there are e.g. header formats for Control Plane PDCP Data PDU with long PDCP SN (12 bits), for User plane PDCP Data PDU with short PDCP SN (7 bits) and others.

Related Research Articles

Enhanced Data Rates for GSM Evolution digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM

Enhanced Data rates for GSM Evolution (EDGE) is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular in the United States.

General Packet Radio Service (GPRS) is a packet oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it still remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g. Ethernet frame.

In computing, Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and encrypts the packets of data to provide secure encrypted communication between two computers over an Internet Protocol network. It is used in virtual private networks (VPNs).

The Serial Line Internet Protocol is an encapsulation of the Internet Protocol designed to work over serial ports and router connections. It is documented in RFC 1055. On personal computers, SLIP has been largely replaced by the Point-to-Point Protocol (PPP), which is better engineered, has more features and does not require its IP address configuration to be set before it is established. On microcontrollers, however, SLIP is still the preferred way of encapsulating IP packets due to its very small overhead.

Medium access control a service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. Within the data link layer, the LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

The GPRS core network is the central part of the general packet radio service (GPRS) which allows 2G, 3G and WCDMA mobile networks to transmit IP packets to external networks such as the Internet. The GPRS system is an integrated part of the GSM network switching subsystem.

GPRS Tunneling Protocol (GTP) is a group of IP-based communications protocols used to carry general packet radio service (GPRS) within GSM, UMTS and LTE networks. In 3GPP architectures, GTP and Proxy Mobile IPv6 based interfaces are specified on various interface points.

Robust Header Compression (ROHC) is a standardized method to compress the IP, UDP, UDP-Lite, RTP, and TCP headers of Internet packets.

E-UTRA air interface of 3GPP LTE upgrade path for mobile networks

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (EnodeB).

High Speed Packet Access Communications protocols

High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further improved 3GPP standard, Evolved High Speed Packet Access, was released late in 2008 with subsequent worldwide adoption beginning in 2010. The newer standard allows bit-rates to reach as high as 337 Mbit/s in the downlink and 34 Mbit/s in the uplink. However, these speeds are rarely achieved in practice.

The Radio Resource Control (RRC) protocol is used in UMTS and LTE on the Air interface. It is a layer that exists between UE and eNB and exists at the IP level. This protocol is specified by 3GPP in TS 25.331 for UMTS and in TS 36.331 for LTE. RRC messages are transported via the PDCP-Protocol.

Evolved High Speed Packet Access technical standard for wireless, broadband telecommunication

Evolved High Speed Packet Access, or HSPA+, or HSPA(Plus), or HSPAP is a technical standard for wireless broadband telecommunication. It is the second phase of HSPA which has been introduced in 3GPP release 7 and being further improved in later 3GPP releases. HSPA+ can achieve data rates of up to 42.2 Mbit/s. It introduces antenna array technologies such as beamforming and multiple-input multiple-output communications (MIMO). Beam forming focuses the transmitted power of an antenna in a beam towards the user's direction. MIMO uses multiple antennas at the sending and receiving side. Further releases of the standard have introduced dual carrier operation, i.e. the simultaneous use of two 5 MHz carriers. The technology also delivers significant battery life improvements and dramatically quicker wake-from-idle time, delivering a true always-on connection. HSPA+ is an evolution of HSPA that upgrades the existing 3G network and provides a method for telecom operators to migrate towards 4G speeds that are more comparable to the initially available speeds of newer LTE networks without deploying a new radio interface. HSPA+ should not be confused with LTE though, which uses an air interface based on orthogonal frequency-division modulation and multiple access.

System Architecture Evolution (SAE) is the core network architecture of 3GPP's LTE wireless communication standard.

ATM Adaptation Layer 2 (AAL2) is an ATM adaptation layer for Asynchronous Transfer Mode (ATM), used primarily in telecommunications; for example, it is used for the Iu interfaces in the Universal Mobile Telecommunications System, and is also used for transporting digital voice. The standard specifications related to AAL2 are ITU standards I.363.2 and I366.1.

Radio link control (RLC) is a layer 2 Radio Link Protocol used in UMTS and LTE on the Air interface. This protocol is specified by 3GPP in TS 25.322 for UMTS, TS 36.322 for LTE and TS 38.322 for 5G New Radio (NR). RLC is located on top of the 3GPP MAC-layer and below the PDCP-layer. The main tasks of the RLC protocol are:

LTE-WLAN aggregation (LWA) is a technology defined by the 3GPP. In LWA, a mobile handset supporting both LTE and Wi-Fi may be configured by the network to utilize both links simultaneously. It provides an alternative method of using LTE in unlicensed spectrum, which unlike LAA/LTE-U can be deployed without hardware changes to the network infrastructure equipment and mobile devices, while providing similar performance to that of LAA. Unlike other methods of using LTE and WLAN simultaneously, LWA allows using both links for a single traffic flow and is generally more efficient, due to coordination at lower protocol stack layers.

Packet Forwarding Control Protocol (PFCP) is a 3GPP protocol used on the Sx/N4 interface between the control plane and the user plane function, specified in TS 29.244. It is one of the main protocols introduced in the 5G Next Generation Mobile Core Network, but also used in the 4G/LTE EPC to implement the Control and User Plane Separation (CUPS). PFCP and the associated interfaces seek to formalize the interactions between different types of functional elements used in the Mobile Core Networks as deployed by most operators providing 4G, as well as 5G, services to mobile subscribers. These 2 types of components are:

  1. The Control Plane (CP) functional elements, handling mostly signaling procedures
  2. The User-data Plane (UP) functional elements, handling mostly packet forwarding, based on rules set by the CP elements.

Backhaul Adaptation Protocol (BAP) is a layer 2 Routing protocol used in 5G for Integrated Access and Backhaul (IAB) .

References

  1. "TS 25.323". www.3gpp.org. Retrieved 2019-03-14.
  2. "TS 36.323". www.3gpp.org. Retrieved 2019-03-14.
  3. "TS 38.323". www.3gpp.org. Retrieved 2019-03-14.