Paola Cappellaro | |
---|---|
Alma mater | Polytechnic University of Milan École Centrale Paris Massachusetts Institute of Technology |
Scientific career | |
Institutions | Massachusetts Institute of Technology Harvard University |
Thesis | Quantum information processing in multi-spin systems (2006) |
Doctoral advisor | David G. Cory |
Website | Quantum Engineering Group |
Paola Cappellaro is an Italian-American engineer who is a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. Her research considers electron-spin resonance, nuclear magnetic resonance and quantum information processing. She also leads the MIT Quantum Engineering Group at the Center for Ultracold Atoms.
Cappellaro was born in Italy where she attended the Polytechnic University of Milan majoring in nuclear engineering. She was part of a joint Master's program with the École Centrale Paris, and graduated in 2000. [1] Cappellaro moved to the United States for her graduate studies, where she worked alongside David G. Cory on quantum computation. In 2006, Cappellaro earned her doctorate at the Massachusetts Institute of Technology (MIT). [2] Her doctorate considered quantum state transfer in spin chains, making use of magnetic-based approaches to understand and explore spin transfer dynamics. [3] She completed her postdoctoral training at the Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard University. [4]
In 2009, Cappellaro returned to Massachusetts Institute of Technology, where she was made Assistant Professor. She serves as Head of the MIT Quantum Engineering Group at the Center for Ultracold Atoms. [5] Cappellaro has developed novel control techniques for electronic and nuclear spin qubits. [6] She realized the first nitrogen-vacancy center diamond-based magnetometers. [2] She pioneered the use of nuclear magnetic resonance to understand the propagation of spin excitations along a chain of interacting spins. [7]
In 2020, Cappellaro demonstrated that it is possible to make use of the nitrogen-vacancy (NV) qubits in diamond to perform quantum operations. [8] These NVs are defects which can be manipulated by electromagnetic waves, and respond by emitting light that can carry quantum information. [8] These NV centers are usually surrounded by other 'spin' defects, which have unknown spin properties. When an NV qubit interacts with a spin defect, it loses its coherent state, and can no longer perform quantum operations. [8] As NV qubits can be identified and controlled using microwave pulses, they can be used to probe their nearby environments. [8] Subsequent microwave pulses and applied magnetic fields can resonantly excite nearby spin defects, ultimately revealing their location. [8] Cappellaro showed that these defects can then be leveraged as additional qubits, which can be briefly entangled with one another to achieve a coherent quantum state. [8] These manifest as spikes in the resonance spectra. [8] Cappellaro measured the spins of these defects using electron-spin resonance. [8]
Cappellaro is the Ford Professor of Engineering, Professor of Nuclear Science and Engineering and Professor of Physics at MIT. [9]
This is a timeline of quantum computing.
The Kane quantum computer is a proposal for a scalable quantum computer proposed by Bruce Kane in 1998, who was then at the University of New South Wales. Often thought of as a hybrid between quantum dot and nuclear magnetic resonance (NMR) quantum computers, the Kane computer is based on an array of individual phosphorus donor atoms embedded in a pure silicon lattice. Both the nuclear spins of the donors and the spins of the donor electrons participate in the computation.
The National High Magnetic Field Laboratory (MagLab) is a facility at Florida State University, the University of Florida, and Los Alamos National Laboratory in New Mexico, that performs magnetic field research in physics, biology, bioengineering, chemistry, geochemistry, biochemistry. It is the only such facility in the US, and is among twelve high magnetic facilities worldwide. The lab is supported by the National Science Foundation and the state of Florida, and works in collaboration with private industry.
Nuclear magnetic resonance quantum computing (NMRQC) is one of the several proposed approaches for constructing a quantum computer, that uses the spin states of nuclei within molecules as qubits. The quantum states are probed through the nuclear magnetic resonances, allowing the system to be implemented as a variation of nuclear magnetic resonance spectroscopy. NMR differs from other implementations of quantum computers in that it uses an ensemble of systems, in this case molecules, rather than a single pure state.
The spin qubit quantum computer is a quantum computer based on controlling the spin of charge carriers in semiconductor devices. The first spin qubit quantum computer was first proposed by Daniel Loss and David P. DiVincenzo in 1997,. The proposal was to use the intrinsic spin-1/2 degree of freedom of individual electrons confined in quantum dots as qubits. This should not be confused with other proposals that use the nuclear spin as qubit, like the Kane quantum computer or the nuclear magnetic resonance quantum computer.
The MIT School of Science is one of the five schools of the Massachusetts Institute of Technology, located in Cambridge, Massachusetts, United States. The School, which consolidated under the leadership of Karl Taylor Compton in 1932, is composed of 6 academic departments who grant SB, SM, and PhD or ScD degrees; as well as a number of affiliated laboratories and centers. As of 2020, the Dean of Science is Professor Nergis Mavalvala. With approximately 275 faculty members, 1100 graduate students, 700 undergraduate majors, 500 postdocs, and 400 research staff, the School is the second largest at MIT. As of 2019, 12 faculty members and 14 alumni of the School have won Nobel Prizes.
The nitrogen-vacancy center is one of numerous photoluminescent point defects in diamond. Its most explored and useful properties include its spin-dependent photoluminescence, and its relatively long (millisecond) spin coherence at room temperature, lasting up to milliseconds. The NV center energy levels are modified by magnetic fields, electric fields, temperature, and strain, which allow it to serve as a sensor of a variety of physical phenomena. Its atomic size and spin properties can form the basis for useful quantum sensors.
Jörg Wrachtrup is a German physicist. He is director of the 3rd Institute of Physics and the Centre for Applied Quantum Technology at Stuttgart University. He is an appointed Max Planck Fellow at the Max Planck Institute for Solid State Research in Stuttgart. Wrachtrup is a pioneer in solid state quantum physics. Already in his PhD thesis, he carried out the first electron spin resonance experiments on single electron spins. The work was done in close collaboration with M. Orrit at the CNRS Bordeaux. To achieve the required sensitivity and selectivity, optical excitation of single molecules was combined with spin resonance techniques. This optically detected magnetic resonance is based on spin dependent optical selection rules. An important part of the early work was coherent control. As a result the first coherent experiments on single electron spins and nuclear spins in solids were accomplished.
Within quantum technology, a quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensing deals with the design and engineering of quantum sources and quantum measurements that are able to beat the performance of any classical strategy in a number of technological applications. This can be done with photonic systems or solid state systems.
Isaac L. Chuang is an American electrical engineer and physicist. He leads the quanta research group at the Center for Ultracold Atoms at Massachusetts Institute of Technology (MIT). He received his undergraduate degrees in physics (1990) and electrical engineering (1991) and master's in electrical engineering (1991) at MIT. In 1997 he received his PhD in electrical engineering from Stanford University.
The Centre for Quantum Computation (CQC) is an alliance of quantum information research groups at the University of Oxford. It was founded by Artur Ekert in 1998.
Spin engineering describes the control and manipulation of quantum spin systems to develop devices and materials. This includes the use of the spin degrees of freedom as a probe for spin based phenomena. Because of the basic importance of quantum spin for physical and chemical processes, spin engineering is relevant for a wide range of scientific and technological applications. Current examples range from Bose–Einstein condensation to spin-based data storage and reading in state-of-the-art hard disk drives, as well as from powerful analytical tools like nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy to the development of magnetic molecules as qubits and magnetic nanoparticles. In addition, spin engineering exploits the functionality of spin to design materials with novel properties as well as to provide a better understanding and advanced applications of conventional material systems. Many chemical reactions are devised to create bulk materials or single molecules with well defined spin properties, such as a single-molecule magnet. The aim of this article is to provide an outline of fields of research and development where the focus is on the properties and applications of quantum spin.
Robert Guy Griffin is a Professor of Chemistry and director of the Francis Bitter Magnet Laboratory at Massachusetts Institute of Technology (MIT). He is known for his work in nuclear magnetic resonance (NMR) and developing high-field dynamic nuclear polarisation (DNP) for the study of biological solids. He has contributed many different methods and approaches now widely used in solid-state NMR spectroscopy, in particular in context of magic-angle-spinning NMR. For example, this extends to methods for resolution enhancement via heteronuclear decoupling, as well as techniques for polarisation transfer between nuclei.
Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.
The DiVincenzo criteria are conditions necessary for constructing a quantum computer, conditions proposed in 1996 by the theoretical physicist David P. DiVincenzo, as being those necessary to construct such a computer—a computer first proposed by mathematician Yuri Manin, in 1980, and physicist Richard Feynman, in 1982—as a means to efficiently simulate quantum systems, such as in solving the quantum many-body problem.
In physics, optically detected magnetic resonance (ODMR) is a double resonance technique by which the electron spin state of a crystal defect may be optically pumped for spin initialisation and readout.
Andrea Morello is the Scientia Professor of Quantum Engineering in the School of Electrical Engineering and Telecommunications at the University of New South Wales, and a Program Manager at the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T). Morello is the head of the Fundamental Quantum Technologies Laboratory at UNSW.
Danna Freedman is an American chemist and the Frederick George Keyes Professor of Chemistry at the Massachusetts Institute of Technology. Her group's research focuses on applying inorganic chemistry towards questions in physics, with an emphasis on quantum information science, materials with emergent properties, and magnetism. Freedman was awarded the 2019 ACS Award in Pure Chemistry and a MacArthur Fellowship in 2022.
Jeffrey Allen Reimer is an American chemist, academic, author and researcher. He is the C. Judson King Endowed Professor, a Warren and Katharine Schlinger Distinguished Professor and the chair of the chemical and biomolecular engineering department at University of California, Berkeley.