Papagoite

Last updated
Papagoite
Papagoite-k-152b.jpg
Crystalline papagoite from Namibia (size: 5.9 x 3.3 x 2.1 cm)
General
Category Cyclosilicate
Formula
(repeating unit)
CaCuAlSi2O6(OH)3
IMA symbol Pap [1]
Strunz classification 9.CE.05
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/m
Unit cell a = 12.92 Å, b = 11.49 Å,
c = 4.69 Å; β = 100.81°; Z = 4
Identification
ColorDark blue crystals, light blue when massive
Crystal habit Massive; cryptocrystalline, forming flat elongated crystals
Cleavage Imperfect in one direction
Fracture Brittle
Mohs scale hardness5–5.5
Luster Vitreous to dull
Streak Light blue
Specific gravity 3.25
Optical propertiesBiaxial (-)
Refractive index nα = 1.607 nβ = 1.641 nγ = 1.672
Birefringence δ = 0.065
Pleochroism Trichroic
2V angle Measured: 78°
References [2] [3] [4] [5]

Papagoite is a rare cyclosilicate mineral. Chemically, it is a calcium copper aluminium silicate hydroxide, found as a secondary mineral on slip surfaces and in altered granodiorite veins, either in massive form or as microscopic crystals that may form spherical aggregates. Its chemical formula is Ca Cu Al Si 2 O 6(O H)3.

It was discovered in 1960 in Ajo, Arizona, US, and was named after the Hia C-ed O'odham people (also known as the Sand Papago) who inhabit the area. [5] This location is the only papagoite source within the United States, while worldwide it is also found in South Africa and Namibia. It is associated with aurichalcite, shattuckite, ajoite and baryte in Arizona, and with quartz, native copper and ajoite in South Africa. [5] Its bright blue color is the mineral's most notable characteristic.

It is used as a gemstone. [6]

Related Research Articles

<span class="mw-page-title-main">Euxenite</span> Oxide mineral

Euxenite, or euxenite-(Y), is a brownish black mineral with a metallic luster.

<span class="mw-page-title-main">Vanadinite</span> Apatite supergroup, vanadate mineral

Vanadinite is a mineral belonging to the apatite group of phosphates, with the chemical formula Pb5(VO4)3Cl. It is one of the main industrial ores of the metal vanadium and a minor source of lead. A dense, brittle mineral, it is usually found in the form of red hexagonal crystals. It is an uncommon mineral, formed by the oxidation of lead ore deposits such as galena. First discovered in 1801 in Mexico, vanadinite deposits have since been unearthed in South America, Europe, Africa, and North America.

<span class="mw-page-title-main">Clinoclase</span>

Clinoclase is a hydrous copper arsenate mineral, Cu3AsO4(OH)3. Clinoclase is a rare secondary copper mineral and forms acicular crystals in the fractured weathered zone above copper sulfide deposits. It occurs in vitreous, translucent dark blue to dark greenish blue colored crystals and botryoidal masses. The crystal system is monoclinic 2/m. It has a hardness of 2.5 - 3 and a relative density of 4.3. Associated minerals include malachite, olivenite, quartz, limonite, adamite, azurite, and brochantite among others.

<span class="mw-page-title-main">Chalcanthite</span> Sulfate mineral

Chalcanthite is a richly colored blue-green water-soluble sulfate mineral CuSO4 · 5H2O. It is commonly found in the late-stage oxidation zones of copper deposits. Due to its ready solubility, chalcanthite is more common in arid regions.

<span class="mw-page-title-main">Uvarovite</span> Chromium-bearing garnet group

Uvarovite is a chromium-bearing garnet group species with the formula: Ca3Cr2(SiO4)3. It was discovered in 1832 by Germain Henri Hess who named it after Count Sergei Semenovitch Uvarov (1765–1855), a Russian statesman and amateur mineral collector. It is classified in the ugrandite group alongside the other calcium-bearing garnets andradite and grossular.

<span class="mw-page-title-main">Glaucophane</span>

Glaucophane is the name of a mineral and a mineral group belonging to the sodic amphibole supergroup of the double chain inosilicates, with the chemical formula ☐Na2(Mg3Al2)Si8O22(OH)2.

<span class="mw-page-title-main">Adamite</span>

Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.

<span class="mw-page-title-main">Sperrylite</span>

Sperrylite is a platinum arsenide mineral with the chemical formula PtAs2 and is an opaque metallic tin white mineral which crystallizes in the isometric system with the pyrite group structure. It forms cubic, octahedral or pyritohedral crystals in addition to massive and reniform habits. It has a Mohs hardness of 6 - 7 and a very high specific gravity of 10.6.

<span class="mw-page-title-main">Connellite</span>

Connellite is a rare mineral species, a hydrous copper chloro-sulfate, Cu19(OH)32(SO4)Cl4·3H2O, crystallizing in the hexagonal system. It occurs as tufts of very delicate acicular crystals of a fine blue color, and is associated with other copper minerals of secondary origin, such as cuprite and malachite. Its occurrence in Cornwall, England, was noted by Philip Rashleigh in 1802, and it was first examined chemically by Prof Arthur Connell FRSE in 1847, after whom it is named.

<span class="mw-page-title-main">Antlerite</span> Copper sulfate mineral

Antlerite is a greenish hydrous copper sulfate mineral, with the formula Cu3(SO4)(OH)4. It occurs in tabular, acicular, or fibrous crystals with a vitreous luster. Originally believed to be a rare mineral, antlerite was found to be the primary ore of the oxidised zones in several copper mines across the world, including the Chuquicamata mine in Chile, and the Antler mine in Arizona, US from which it takes its name. It is chemically and optically similar in many respects to other copper minerals such as malachite and brochantite, though it can be distinguished from the former by a lack of effervescence in hydrochloric acid.

Geigerite is a mineral, a complex hydrous manganese arsenate with formula: Mn5(AsO3OH)2(AsO4)2·10H2O. It forms triclinic pinacoidal, vitreous, colorless to red to brown crystals. It has a Mohs hardness of 3 and a specific gravity of 3.05.

<span class="mw-page-title-main">Cesbronite</span>

Cesbronite is a copper-tellurium oxysalt mineral with the chemical formula Cu3Te6+O4(OH)4 (IMA 17-C). It is colored green and its crystals are orthorhombic dipyramidal. Cesbronite is rated 3 on the Mohs Scale. It is named after Fabien Cesbron (born 1938), a French mineralogist.

<span class="mw-page-title-main">Ajoite</span>

Ajoite is a hydrated sodium potassium copper aluminium silicate hydroxide mineral. Ajoite has the chemical formula (Na,K)Cu7AlSi9O24(OH)6·3H2O, and minor Mn, Fe and Ca are usually also present in the structure. Ajoite is used as a minor ore of copper.

<span class="mw-page-title-main">Conichalcite</span>

Conichalcite, CaCu(AsO4)(OH), is a relatively common arsenate mineral related to duftite (PbCu(AsO4)(OH)). It is green, often botryoidal, and occurs in the oxidation zone of some metal deposits. It occurs with limonite, malachite, beudantite, adamite, cuproadamite, olivenite and smithsonite.

Campigliaite is a copper and manganese sulfate mineral with a chemical formula of Cu4Mn(SO4)2(OH)6·4H2O. It has a chemical formula and also a crystal structure similar to niedermayrite, with Cd(II) cation replacing by Mn(II). The formation of campigliaite is related to the oxidation of sulfide minerals to form sulfate solutions with ilvaite associated with the presence of manganese. Campigliaite is a rare secondary mineral formed when metallic sulfide skarn deposits are oxidized. While there are several related associations, there is no abundant source for this mineral due to its rare process of formation. Based on its crystallographic data and chemical formula, campigliaite is placed in the devillite group and considered the manganese analogue of devillite. Campigliaite belongs to the copper oxysalt minerals as well followed by the subgroup M=M-T sheets. The infinite sheet structures that campigliaite has are characterized by strongly bonded polyhedral sheets, which are linked in the third dimension by weaker hydrogen bonds.

<span class="mw-page-title-main">Fluellite</span>

Fluellite is a mineral with the chemical formula Al2(PO4)F2(OH)•7H2O. The name is from its chemical composition, being a fluate of alumine (French).

<span class="mw-page-title-main">Anthonyite</span>

Anthonyite is a hydrous secondary copper halide mineral with chemical formula of Cu(OH,Cl)2·3(H2O).

<span class="mw-page-title-main">Gilalite</span>

Gilalite is a copper silicate mineral with chemical composition of Cu5Si6O17·7(H2O).

<span class="mw-page-title-main">Matlockite</span>

Matlockite is a rare lead halide mineral, named after the town of Matlock in Derbyshire, England, where it was first discovered in a nearby mine. Matlockite gives its name to the matlockite group which consists of rare minerals of a similar structure.

<span class="mw-page-title-main">Utahite</span>

Utahite is an extremely rare secondary copper zinc tellurate mineral found as a product of oxidation. Its chemical formula is Cu5Zn3(Te6+O4)4(OH)8•7H2O.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mineralienatlas
  3. MinDat
  4. Webmineral
  5. 1 2 3 Handbook of Mineralogy
  6. Dictionary of Gems and Gemology By Mohsen Manutchehr-Danai p. 352


Papagoite with conichalcite, from Ajo, Arizona. Papagoite.jpg
Papagoite with conichalcite, from Ajo, Arizona.
Papagoite and native copper inclusions on a quartz crystal from Limpopo Province, South Africa (size 7.0 x 3.7 x 2.6 cm) Copper-Papagoite-Quartz-tmu46b.jpg
Papagoite and native copper inclusions on a quartz crystal from Limpopo Province, South Africa (size 7.0 x 3.7 x 2.6 cm)