Original author(s) | Piotr Wendykier |
---|---|
Stable release | 0.9.4 / March 21, 2010 |
Operating system | Cross-platform |
Type | Library |
License | Various |
Website | sites |
Parallel Colt is a set of multithreaded version of Colt. It is a collection of open-source libraries for High Performance Scientific and Technical Computing written in Java. It contains all the original capabilities of Colt and adds several new ones, with a focus on multi-threaded algorithms.
Parallel Colt has all the capabilities of the original Colt library, with the following additions. [1]
Example of Singular Value Decomposition (SVD):
DenseDoubleAlgebraalg=newDenseDoubleAlgebra();DenseDoubleSingularValueDecompositions=alg.svd(matA);DoubleMatrix2DU=s.getU();DoubleMatrix2DS=s.getS();DoubleMatrix2DV=s.getV();
Example of matrix multiplication:
DenseDoubleAlgebraalg=newDenseDoubleAlgebra();DoubleMatrix2Dresult=alg.mult(matA,matB);
In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition.
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix. The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently. The basic idea is to perform a QR decomposition, writing the matrix as a product of an orthogonal matrix and an upper triangular matrix, multiply the factors in the reverse order, and iterate.
Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms. LSA assumes that words that are close in meaning will occur in similar pieces of text. A matrix containing word counts per document is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns. Documents are then compared by taking the cosine of the angle between the two vectors formed by any two columns. Values close to 1 represent very similar documents while values close to 0 represent very dissimilar documents.
LAPACK is a standard software library for numerical linear algebra. It provides routines for solving systems of linear equations and linear least squares, eigenvalue problems, and singular value decomposition. It also includes routines to implement the associated matrix factorizations such as LU, QR, Cholesky and Schur decomposition. LAPACK was originally written in FORTRAN 77, but moved to Fortran 90 in version 3.2 (2008). The routines handle both real and complex matrices in both single and double precision.
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. They are the de facto standard low-level routines for linear algebra libraries; the routines have bindings for both C and Fortran. Although the BLAS specification is general, BLAS implementations are often optimized for speed on a particular machine, so using them can bring substantial performance benefits. BLAS implementations will take advantage of special floating point hardware such as vector registers or SIMD instructions.
In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form , where is a unitary matrix and is a positive semi-definite Hermitian matrix, both square and of the same size.
JAMA is a software library for performing numerical linear algebra tasks created at National Institute of Standards and Technology in 1998 similar in functionality to LAPACK.
Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.
Lis is a scalable parallel software library for solving discretized linear equations and eigenvalue problems that mainly arise in the numerical solution of partial differential equations by using iterative methods. Although it is designed for parallel computers, the library can be used without being conscious of parallel processing.
Colt is a set of open-source Libraries for High Performance Scientific and Technical Computing written in Java and developed at CERN. Colt was developed with a focus on High Energy Physics, but is applicable to many other problems. Colt was last updated in 2004 and its code base has been incorporated into the Parallel Colt code base, which has received more recent development.
SLEPc is a software library for the parallel computation of eigenvalues and eigenvectors of large, sparse matrices. It can be seen as a module of PETSc that provides solvers for different types of eigenproblems, including linear and nonlinear, as well as the SVD. Recent versions also include support for matrix functions. It uses the MPI standard for parallelization. Both real and complex arithmetic are supported, with single, double and quadruple precision.
Matrix Toolkit Java (MTJ) is an open-source Java software library for performing numerical linear algebra. The library contains a full set of standard linear algebra operations for dense matrices based on BLAS and LAPACK code. Partial set of sparse operations is provided through the Templates project. The library can be configured to run as a pure Java library or use BLAS machine-optimized code through the Java Native Interface.
Programming with Big Data in R (pbdR) is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation. The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical software. The significant difference between pbdR and R code is that pbdR mainly focuses on distributed memory systems, where data are distributed across several processors and analyzed in a batch mode, while communications between processors are based on MPI that is easily used in large high-performance computing (HPC) systems. R system mainly focuses on single multi-core machines for data analysis via an interactive mode such as GUI interface.
oj! Algorithms or ojAlgo, is an open source Java library for mathematics, linear algebra and optimisation. It was first released in 2003 and is 100% pure Java source code and free from external dependencies. Its feature set make it particularly suitable for use within the financial domain.
Efficient Java Matrix Library (EJML) is a linear algebra library for manipulating real/complex/dense/sparse matrices. Its design goals are; 1) to be as computationally and memory efficient as possible for both small and large matrices, and 2) to be accessible to both novices and experts. These goals are accomplished by dynamically selecting the best algorithms to use at runtime, clean API, and multiple interfaces. EJML is free, written in 100% Java and has been released under an Apache v2.0 license.
jblas is a linear algebra library, created by Mikio Braun, for the Java programming language built upon BLAS and LAPACK. Unlike most other Java linear algebra libraries, jblas is designed to be used with native code through the Java Native Interface (JNI) and comes with precompiled binaries. When used on one of the targeted architectures, it will automatically select the correct binary to use and load it. This allows it to be used out of the box and avoid a potentially tedious compilation process. jblas provides an easier to use high level API on top of the archaic API provided by BLAS and LAPACK, removing much of the tediousness.
{{cite web}}
: Check |url=
value (help)