Parallel processing (DSP implementation)

Last updated

In digital signal processing (DSP), parallel processing is a technique duplicating function units to operate different tasks (signals) simultaneously. [1] Accordingly, we can perform the same processing for different signals on the corresponding duplicated function units. Further, due to the features of parallel processing, the parallel DSP design often contains multiple outputs, resulting in higher throughput than not parallel.

Contents

Conceptual example

Consider a function unit () and three tasks (, , and ). The required time for the function unit to process those tasks is , , and , respectively. Then, if we operate these three tasks in a sequential order, the required time to complete them is .


Non-parallel.png

However, if we duplicate the function unit to another two copies (), the aggregate time is reduced to , which is smaller than in a sequential order.


Parallel-tasks.png

Versus pipelining

Mechanism:

Objective:

Consider a condition that we are able to apply both parallel processing and pipelining techniques, it is better to choose parallel processing techniques with the following reasons

Parallel FIR filters

Consider a 3-tap FIR filter: [2]

which is shown in the following figure.

Assume the calculation time for multiplication units is Tm and Ta for add units. The sample period is given by

Pipelined FIR filters.png

By parallelizing it, the resultant architecture is shown as follows. The sample rate now becomes

where N represents the number of copies.

Please note that, in a parallel system, while holds in a pipelined system.

Parallel FIR.png

Parallel 1st-order IIR filters

Consider the transfer function of a 1st-order IIR filter formulated as

where |a| ≤ 1 for stability, and such filter has only one pole located at z = a;

The corresponding recursive representation is

Consider the design of a 4-parallel architecture (N = 4). In such parallel system, each delay element means a block delay and the clock period is four times the sample period.

Therefore, by iterating the recursion with n = 4k, we have

The corresponding architecture is shown as follows.

Parallel IIR.png

The resultant parallel design has the following properties.

The square increase in hardware complexity can be reduced by exploiting the concurrency and the incremental computation to avoid repeated computing.

Parallel processing for low power

Another advantage for the parallel processing techniques is that it can reduce the power consumption of a system by reducing the supply voltage.

Consider the following power consumption in a normal CMOS circuit.

where the Ctotal represents the total capacitance of the CMOS circuit.

For a parallel version, the charging capacitance remains the same but the total capacitance increases by N times.

In order to maintain the same sample rate, the clock period of the N-parallel circuit increases to N times the propagation delay of the original circuit.

It makes the charging time prolongs N times. The supply voltage can be reduced to βV0.

Therefore, the power consumption of the N-parallel system can be formulated as

where β can be computed by

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex valued frequency-domain representation.

<span class="mw-page-title-main">Logistic regression</span> Statistical model for a binary dependent variable

In statistics, the logistic model is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression is estimating the parameters of a logistic model. Formally, in binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the independent variables can each be a binary variable or a continuous variable. The corresponding probability of the value labeled "1" can vary between 0 and 1, hence the labeling; the function that converts log-odds to probability is the logistic function, hence the name. The unit of measurement for the log-odds scale is called a logit, from logistic unit, hence the alternative names. See § Background and § Definition for formal mathematics, and § Example for a worked example.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions.

In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model. It is used when there is a non-zero amount of correlation between the residuals in the regression model. GLS is employed to improve statistical efficiency and reduce the risk of drawing erroneous inferences, as compared to conventional least squares and weighted least squares methods. It was first described by Alexander Aitken in 1935.

A switched capacitor (SC) is an electronic circuit that implements a function by moving charges into and out of capacitors when electronic switches are opened and closed. Usually, non-overlapping clock signals are used to control the switches, so that not all switches are closed simultaneously. Filters implemented with these elements are termed switched-capacitor filters, which depend only on the ratios between capacitances and the switching frequency, and not on precise resistors. This makes them much more suitable for use within integrated circuits, where accurately specified resistors and capacitors are not economical to construct, but accurate clocks and accurate relative ratios of capacitances are economical.

In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading results if there is another confounding variable that is numerically related to both variables of interest. This misleading information can be avoided by controlling for the confounding variable, which is done by computing the partial correlation coefficient. This is precisely the motivation for including other right-side variables in a multiple regression; but while multiple regression gives unbiased results for the effect size, it does not give a numerical value of a measure of the strength of the relationship between the two variables of interest.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

<span class="mw-page-title-main">Gompertz distribution</span> Continuous probability distribution, named after Benjamin Gompertz

In probability and statistics, the Gompertz distribution is a continuous probability distribution, named after Benjamin Gompertz. The Gompertz distribution is often applied to describe the distribution of adult lifespans by demographers and actuaries. Related fields of science such as biology and gerontology also considered the Gompertz distribution for the analysis of survival. More recently, computer scientists have also started to model the failure rates of computer code by the Gompertz distribution. In Marketing Science, it has been used as an individual-level simulation for customer lifetime value modeling. In network theory, particularly the Erdős–Rényi model, the walk length of a random self-avoiding walk (SAW) is distributed according to the Gompertz distribution.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

Pipelining is an important technique used in several applications such as digital signal processing (DSP) systems, microprocessors, etc. It originates from the idea of a water pipe with continuous water sent in without waiting for the water in the pipe to come out. Accordingly, it results in speed enhancement for the critical path in most DSP systems. For example, it can either increase the clock speed or reduce the power consumption at the same speed in a DSP system.

In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. The goal of diffusion models is to learn a diffusion process that generates the probability distribution of a given dataset. They learn the latent structure of a dataset by modeling the way in which data points diffuse through their latent space.

References

  1. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley, 1999
  2. Slides for VLSI Digital Signal Processing Systems: Design and Implementation John Wiley & Sons, 1999 ( ISBN   0-471-24186-5): http://people.ece.umn.edu/~parhi/publications/books/