Parathyroid disease

Last updated
Parathyroid disease
Parathyroid adenoma low mag.jpg
Micrograph of a parathyroid adenoma (left) and normal parathyroid gland (right). H&E stain.
Specialty Endocrinology   OOjs UI icon edit-ltr-progressive.svg

Many conditions are associated with disorders of the function of the parathyroid gland. Some disorders may be purely anatomical resulting in an enlarged gland which will raise concern. Such benign disorders, such as parathyroid cyst, are not discussed here. Parathyroid diseases can be divided into those causing hyperparathyroidism, and those causing hypoparathyroidism. [1]

Contents

Comparison

Condition Calcium Parathyroid hormone
primary hyperparathyroidism highhigh
primary hypoparathyroidismlowlow
secondary hyperparathyroidismnormalhigh
pseudohypoparathyroidism lowhigh

The single major disease of parathyroid glands is overactivity of one or more of the parathyroid lobes, which make too much parathyroid hormone, causing a potentially serious calcium imbalance. This is called hyperparathyroidism; it leads to hypercalcemia, kidney stones, osteoporosis, and various other symptoms. Hyperparathyroidism was first described in 1925 and the symptoms have collectively become known as "moans, groans, stones, and bones." By far, the most common symptom is fatigue, but depression, memory loss, and bone aches are also very common. Primary hyperparathyroidism is relatively more common in postmenopausal women. The primary treatment for this disease is the surgical removal of the faulty gland.[ citation needed ]

If a patient has elevated calcium, several different types of tests can be used to locate the abnormal glands. The most common and most accurate test to find a parathyroid tumor is the Sestamibi scan. The Sestamibi scan does not have high resolution. Neck ultrasound has higher resolution, but requires some expertise to perform. Ultrasound's shortcomings include: it cannot determine glandular function (normal vs. hyperfunctioning) or visualize unusual locations such as retropharyngeal or mediastinal. Thin cut computed tomography of the neck can reveal glands in locations that the ultrasound cannot evaluate well; e.g. retropharyngeal, mediastinal. These tests are ordered by an endocrinologist or a surgeon that specializes in parathyroid surgery. Often, these "localizing" tests used to "find" the bad parathyroid gland are not successful in locating which parathyroid gland has become a tumor. This often causes confusion for the patient and doctor, since the tumor was not located. This simply means that the tumor was not found using these tests; it does not mean the tumor does not exist. The use of ultrasound-guided FNA, and parathyroid hormone washings can confirm the abnormal glands. For decades, it has been known that the best way to find a parathyroid tumor is through a very experienced parathyroid surgeon.[ citation needed ]

Even if a patient has a non-localizing Sestamibi scan (a negative sestamibi scan), he/she should almost always have a neck exploration to remove the tumor if he/she has high calcium levels, among other symptoms. Minimally-invasive parathyroid surgery is becoming more available, but, depending on the expertise of the surgeon, the patient may need to have a positive sestamibi scan before a minimally-invasive operation is attempted. Some of the most experienced surgeons perform mini-parathyroid surgery on all patients, but this is available only at highly specialized centers. Some patients will need both sides of their necks explored to find the dysfunctional gland(s).[ citation needed ]

Another related condition is called secondary hyperparathyroidism (HPT for short), which is common in patients with chronic kidney disease on dialysis. In secondary HPT, the parathyroid glands make too much parathyroid hormone (PTH) because the kidneys have failed, and the calcium and phosphorus are out of balance. Even though one may not have any symptoms, treating secondary HPT is important. Cinacalcet (Sensipar) is a medicine that can help treat such dialysis patients and is available by prescription only. Most experts believe that Sensipar should not be used for patients with primary hyperparathyroidism (patients that have a high calcium and are not on kidney dialysis).[ citation needed ]

Parathyroid surgery is usually performed when there is hyperparathyroidism. This condition causes many diseases related with calcium reabsorption, because the principal function of the parathyroid hormone is to regulate it. Parathyroid surgery could be performed in two different ways: first is a complete parathyroidectomy, and second is the auto transplantation of the removed parathyroid glands. There are various conditions that can indicate the need for the removal or transplant of the parathyroid glands. Hyperparathyroidism is a condition caused by overproduction of PTH, and can be divided into three types.[ citation needed ]

Another condition is hypercalcemia, which refers to a calcium level above 10.5 mg/dL. Consequences of this are heart rhythm diseases, and extra production of gastrin that causes peptic ulcers. [4]

Parathyroid transplant is recommended if the parathyroid glands are removed accidentally during a thyroidectomy. They are autotransplanted to the nearby sternocleidomastoid muscle, or to the forearm so that another intervention would be less risky. A biopsy is recommended to be sure that the transplanted tissue is parathyroid and not a lymph node with metastatic disease. During parathyroid surgery if there is an adenoma the transplantation is not recommended; instead it is cryopreserved for research an if there is a recurrent hypoparathyroidism. [2] [5]

The surgery is indicated for all patients that are diagnosed with hyperparathyroidism with or without symptoms, especially in younger patients. In some cases the surgery works as therapy for nephrolithiasis, bone changes, and neuromuscular symptoms. [2] [6]

Procedure

Parathyroidectomy, or the removal of the parathyroids, requires general anesthesia. The patient is intubated and placed in a supine position with the chin at fifteen degrees by elevating the shoulders to permit the extension of the neck. Then a transverse cut is made above the sternal notch. The transversal thyroid lobe is reached and is rotated up to discover and ligate the thyroid vein to separate the thyroid artery. Exploration must be done meticulously to search for adenomas. If an adenoma is identified, exploration must be continued because it is common that more than one neoplasia appears. Before the procedure, the glands are marked to make them more visible during the procedure. If one of them cannot be found, the procedure is to remove a complete thyroid lobe on the side where the gland is not found to avoid an intrathyroid parathyroid gland. After exploration, if there is one, two or even three parathyroid glands affected, they are removed and the other one left in situ. If all four glands are affected then three and a half are removed. The remaining half is marked with a suture and the surgeon must be sure that the blood supply will not be compromised. A total parathyroidectomy or auto transplantation to the forearm of the remaining half gland, may also be recommended. [2] [7]

Parathyroid auto transplantation

Parathyroid auto transplantation is part of the treatment when a patient has hyperparathyroidism and three or four parathyroid glands were already removed, but during the surgery one of the glands (in the case of the removal of three) is relocated at another part of the body to make, the procedure less risky another procedure. In the case of complete parathyroidectomy, a half gland is cryopreserved. In case the patient suffers hypoparathyroidism. If this happens the extracted parathyroid is relocated to another place of the body for example the forearm. Parathyroid auto transplantation begins with parathyroid tissue extraction, which must be preserved into a cold isotonic solution until the patient needs it. Research has shown that parathyroid tissue can function at subcutaneous level until the transplantation. If this is not possible, the most common procedure is to create a small pocket of muscle, tissue at least 2 cm deep by separating the muscular fibers. Then the parathyroid tissue is placed into and closed by suturing the area. [4] After the extraction the tissue might be processed at the laboratory, as soon as possible. Once at the laboratory the tissue sample is placed at a frozen petri dish where it is cut into small pieces (approximately 1–2 mm). The small pieces are placed into test tubes and filled with a solution in three parts one at 20% of autologous serum (about 0.6 ml) and the other part of isotonic solution at 20% (about 0.6 ml) then a solution of 2 ml of polypropylene and mixed gently. Then is placed into a container at -70 °C for a night then finally the container passes through the phase of liquid or vapor nitrogen immersion and is kept there until needed. When it is needed the sample is taken out of the nitrogen and placed into a bath of water at 37 °C until the ice is melted almost completely except for the samples core. Then 0.5 ml of the melted solution is removed and replaced for fresh isotonic solution. [2] [8]

Related Research Articles

<span class="mw-page-title-main">Parathyroid gland</span> Endocrine gland

Parathyroid glands are small endocrine glands in the neck of humans and other tetrapods. Humans usually have four parathyroid glands, located on the back of the thyroid gland in variable locations. The parathyroid gland produces and secretes parathyroid hormone in response to a low blood calcium, which plays a key role in regulating the amount of calcium in the blood and within the bones.

<span class="mw-page-title-main">Parathyroid hormone</span> Mammalian protein found in Homo sapiens

Parathyroid hormone (PTH), also called parathormone or parathyrin, is a peptide hormone secreted by the parathyroid glands that regulates the serum calcium concentration through its effects on bone, kidney, and intestine.

Hypercalcemia, also spelled hypercalcaemia, is a high calcium (Ca2+) level in the blood serum. The normal range is 2.1–2.6 mmol/L (8.8–10.7 mg/dL, 4.3–5.2 mEq/L), with levels greater than 2.6 mmol/L defined as hypercalcemia. Those with a mild increase that has developed slowly typically have no symptoms. In those with greater levels or rapid onset, symptoms may include abdominal pain, bone pain, confusion, depression, weakness, kidney stones or an abnormal heart rhythm including cardiac arrest.

Disorders of calcium metabolism occur when the body has too little or too much calcium. The serum level of calcium is closely regulated within a fairly limited range in the human body. In a healthy physiology, extracellular calcium levels are maintained within a tight range through the actions of parathyroid hormone, vitamin D and the calcium sensing receptor. Disorders in calcium metabolism can lead to hypocalcemia, decreased plasma levels of calcium or hypercalcemia, elevated plasma calcium levels.

<span class="mw-page-title-main">Parathyroid chief cell</span>

Parathyroid chief cells are one of the two cell types of the parathyroid glands, along with oxyphil cells. The chief cells are much more prevalent in the parathyroid gland than the oxyphil cells. It is perceived that oxyphil cells may be derived from chief cells at puberty, as they are not present at birth like chief cells.

Hypoparathyroidism is decreased function of the parathyroid glands with underproduction of parathyroid hormone (PTH). This can lead to low levels of calcium in the blood, often causing cramping and twitching of muscles or tetany, and several other symptoms. It is a very rare disease. The condition can be inherited, but it is also encountered after thyroid or parathyroid gland surgery, and it can be caused by immune system-related damage as well as a number of rarer causes. The diagnosis is made with blood tests, and other investigations such as genetic testing depending on the results. The primary treatment of hypoparathyroidism is calcium and vitamin D supplementation. Calcium replacement or vitamin D can ameliorate the symptoms but can increase the risk of kidney stones and chronic kidney disease. Additionally, medications such as recombinant human parathyroid hormone or teriparatide may be given by injection to replace the missing hormone.

<span class="mw-page-title-main">Hyperparathyroidism</span> Increase in parathyroid hormone levels in the blood

Hyperparathyroidism is an increase in parathyroid hormone (PTH) levels in the blood. This occurs from a disorder either within the parathyroid glands or as response to external stimuli. Symptoms of hyperparathyroidism are caused by inappropriately normal or elevated blood calcium leaving the bones and flowing into the blood stream in response to increased production of parathyroid hormone. In healthy people, when blood calcium levels are high, parathyroid hormone levels should be low. With long-standing hyperparathyroidism, the most common symptom is kidney stones. Other symptoms may include bone pain, weakness, depression, confusion, and increased urination. Both primary and secondary may result in osteoporosis.

Technetium (<sup>99m</sup>Tc) sestamibi Pharmaceutical drug

Technetium (99mTc) sestamibi (INN) is a pharmaceutical agent used in nuclear medicine imaging. The drug is a coordination complex consisting of the radioisotope technetium-99m bound to six (sesta=6) methoxyisobutylisonitrile (MIBI) ligands. The anion is not defined. The generic drug became available late September 2008. A scan of a patient using MIBI is commonly known as a "MIBI scan".

<span class="mw-page-title-main">Parathyroidectomy</span> Surgical removal of one or more of the parathyroid glands

Parathyroidectomy is the surgical removal of one or more of the (usually) four parathyroid glands. This procedure is used to remove an adenoma or hyperplasia of these glands when they are producing excessive parathyroid hormone (PTH): hyperparathyroidism. The glands are usually four in number and located adjacent to the posterior surface of the thyroid gland, but their exact location is variable. When an elevated PTH level is found, a sestamibi scan or an ultrasound may be performed in order to confirm the presence and location of abnormal parathyroid tissue.

<span class="mw-page-title-main">Cinacalcet</span> Chemical compound

Cinacalcet, sold under the brand name Sensipar among others, is a medication used to treat tertiary hyperparathyroidism, parathyroid carcinoma, and primary hyperparathyroidism. Cinacalcet acts as a calcimimetic by allosteric activation of the calcium-sensing receptor that is expressed in various human organ tissues.

<span class="mw-page-title-main">Primary hyperparathyroidism</span> Medical condition

Primary hyperparathyroidism is a medical condition where the parathyroid gland produce excess amounts of parathyroid hormone (PTH). The symptoms of the condition relate to the resulting elevated serum calcium (hypercalcemia), which can cause digestive symptoms, kidney stones, psychiatric abnormalities, and bone disease.

<span class="mw-page-title-main">Multiple endocrine neoplasia type 1</span> Medical condition

Multiple endocrine neoplasia type 1 (MEN-1) is one of a group of disorders, the multiple endocrine neoplasias, that affect the endocrine system through development of neoplastic lesions in pituitary, parathyroid gland and pancreas. Individuals suffering from this disorder are prone to developing multiple endocrine and nonendocrine tumors. It was first described by Paul Wermer in 1954.

<span class="mw-page-title-main">Osteitis fibrosa cystica</span> Medical condition

Osteitis fibrosa cystica is a skeletal disorder resulting in a loss of bone mass, a weakening of the bones as their calcified supporting structures are replaced with fibrous tissue, and the formation of cyst-like brown tumors in and around the bone. Osteitis fibrosis cystica (OFC), also known as osteitis fibrosa, osteodystrophia fibrosa, and von Recklinghausen's disease of bone, is caused by hyperparathyroidism, which is a surplus of parathyroid hormone from over-active parathyroid glands. This surplus stimulates the activity of osteoclasts, cells that break down bone, in a process known as osteoclastic bone resorption. The hyperparathyroidism can be triggered by a parathyroid adenoma, hereditary factors, parathyroid carcinoma, or renal osteodystrophy. Osteoclastic bone resorption releases minerals, including calcium, from the bone into the bloodstream, causing both elevated blood calcium levels, and the structural changes which weaken the bone. The symptoms of the disease are the consequences of both the general softening of the bones and the excess calcium in the blood, and include bone fractures, kidney stones, nausea, moth-eaten appearance in the bones, appetite loss, and weight loss.

<span class="mw-page-title-main">Secondary hyperparathyroidism</span> Medical condition

Secondary hyperparathyroidism is the medical condition of excessive secretion of parathyroid hormone (PTH) by the parathyroid glands in response to hypocalcemia, with resultant hyperplasia of these glands. This disorder is primarily seen in patients with chronic kidney failure. It is sometimes abbreviated "SHPT" in medical literature.

<span class="mw-page-title-main">Tertiary hyperparathyroidism</span> Medical condition

Tertiary hyperparathyroidism is a condition involving the overproduction of the hormone, parathyroid hormone, produced by the parathyroid glands. The parathyroid glands are involved in monitoring and regulating blood calcium levels and respond by either producing or ceasing to produce parathyroid hormone. Anatomically, these glands are located in the neck, para-lateral to the thyroid gland, which does not have any influence in the production of parathyroid hormone. Parathyroid hormone is released by the parathyroid glands in response to low blood calcium circulation. Persistent low levels of circulating calcium are thought to be the catalyst in the progressive development of adenoma, in the parathyroid glands resulting in primary hyperparathyroidism. While primary hyperparathyroidism is the most common form of this condition, secondary and tertiary are thought to result due to chronic kidney disease (CKD). Estimates of CKD prevalence in the global community range from 11 to 13% which translate to a large portion of the global population at risk of developing tertiary hyperparathyroidism. Tertiary hyperparathyroidism was first described in the late 1960s and had been misdiagnosed as primary prior to this. Unlike primary hyperparathyroidism, the tertiary form presents as a progressive stage of resolved secondary hyperparathyroidism with biochemical hallmarks that include elevated calcium ion levels in the blood, hypercalcemia, along with autonomous production of parathyroid hormone and adenoma in all four parathyroid glands. Upon diagnosis treatment of tertiary hyperparathyroidism usually leads to a surgical intervention.

<span class="mw-page-title-main">Endocrine disease</span> Medical condition

Endocrine diseases are disorders of the endocrine system. The branch of medicine associated with endocrine disorders is known as endocrinology.

<span class="mw-page-title-main">Parathyroid adenoma</span> Medical condition

A parathyroid adenoma is a benign tumor of the parathyroid gland. It generally causes hyperparathyroidism; there are very few reports of parathyroid adenomas that were not associated with hyperparathyroidism.

<span class="mw-page-title-main">Parathyroid carcinoma</span> Medical condition

Parathyroid carcinoma is a rare cancer resulting in parathyroid adenoma to carcinoma progression. It forms in tissues of one or more of the parathyroid glands.

A calcimimetic is a pharmaceutical drug that mimics the action of calcium on tissues, by allosteric activation of the calcium-sensing receptor that is expressed in various human organ tissues. Calcimimetics are used to treat secondary hyperparathyroidism (SHPT).

<span class="mw-page-title-main">Sestamibi parathyroid scan</span> Procedure in nuclear medicine

A sestamibi parathyroid scan is a procedure in nuclear medicine which is performed to localize parathyroid adenoma, which causes Hyperparathyroidism. Adequate localization of parathyroid adenoma allows the surgeon to use a minimally invasive surgical approach.

References

  1. "Parathyroid Disease: Diagnosis and Treatment". Archived from the original on 2009-04-06. Retrieved 2009-03-24.
  2. 1 2 3 4 5 6 7 prinz, richard= (2000). endocrine surgery . texas: landes bioscience. pp.  98–114.
  3. boron, walter (2011). medical physiology. españa: elsevier saunders. pp. 639–645.
  4. 1 2 guyton, arthur (2011). tratado de fisiologia medica. españa: elsevier saunders. pp. 955–969.
  5. Malmaeus, Jan; Benson, Lars (1986). "Parathyroid surgery in the multiple endocrine neoplasia type I syndrome: choice of surgical procedure". World Journal of Surgery. 10 (4): 668–672. doi:10.1007/BF01655552. PMID   2875566. S2CID   9533108.
  6. Tominaga, Yoshihiro; Masahiro, Numano (1998). "Surgical treatment of renal hyperparathyroidism". Seminars in Surgical Oncology. 13 (2): 87–96. doi:10.1002/(SICI)1098-2388(199703/04)13:2<87::AID-SSU4>3.0.CO;2-Y. PMID   9088064.
  7. Higgins, RM; Richardson, AJ (1991). "Total parathyroidectomy alone or with autograft for renal hyperparathyroidism?". QJM. 79 (1): 323–32. doi: 10.1093/oxfordjournals.qjmed.a068553 . PMID   1852858.
  8. Olson, JA; Debenedetti, MK (1996). "Parathyroid autotransplantation during thyroidectomy. Results of long-term follow-up". Ann Surg. 223 (5): 472–480. doi:10.1097/00000658-199605000-00003. PMC   1235165 . PMID   8651738.