Parhelic circle

Last updated
A crisp parhelic circle (horizontal line) over South Pole Station.
Photo: John Bortniak, NOAA, January 1979. Halo and sun dog - NOAA.jpg
A crisp parhelic circle (horizontal line) over South Pole Station.
Photo: John Bortniak, NOAA, January 1979.
A halo display observed over the South Pole. Featured in the photo are several distinct phenomena: A parhelic circle (horizontal line), a 22deg halo (circle) with two sundogs (bright spots), and an upper tangent arc.
Photo: Cindy McFee, NOAA, December 1980. HALO-S south pole.jpg
A halo display observed over the South Pole. Featured in the photo are several distinct phenomena: A parhelic circle (horizontal line), a 22° halo (circle) with two sundogs (bright spots), and an upper tangent arc.
Photo: Cindy McFee, NOAA, December 1980.
22deg sun halo with a complete parhelic circle. Photo is taken with Samsung S10 phone (wide lens) near Zazid, Slovenia, on May 19th, 2023. Sun halo and parhelic circle.jpg
22° sun halo with a complete parhelic circle. Photo is taken with Samsung S10 phone (wide lens) near Zazid, Slovenia, on May 19th, 2023.
A nearly complete paraselenic circle, along with a partial 22deg lunar halo and the eastern moon dog. Photo is taken by the all-sky camera of the Piszkesteto Mountain Station, Konkoly Observatory (Hungary), February 2023. A nearly complete parhelic circle.jpg
A nearly complete paraselenic circle, along with a partial 22° lunar halo and the eastern moon dog. Photo is taken by the all-sky camera of the Piszkéstető Mountain Station, Konkoly Observatory (Hungary), February 2023.

A parhelic circle is a type of halo, an optical phenomenon appearing as a horizontal white line on the same altitude as the Sun, or occasionally the Moon. If complete, it stretches all around the sky, but more commonly it only appears in sections. [2] If the halo occurs due to light from the Moon rather than the Sun, it is known as a paraselenic circle. [3]

Contents

Even fractions of parhelic circles are less common than sun dogs and 22° halos. While parhelic circles are generally white in colour because they are produced by reflection, they can however show a bluish or greenish tone near the 120° parhelia and be reddish or deep violet along the fringes. [4]

Parhelic circles form as beams of sunlight are reflected by vertical or almost vertical hexagonal ice crystals. The reflection can be either external (e.g. without the light passing through the crystal) which contributes to the parhelic circle near the Sun, or internal (one or more reflections inside the crystal) which creates much of the circle away from the Sun. Because an increasing number of reflections makes refraction asymmetric some colour separation occurs away from the Sun. [5] Sun dogs are always aligned to the parhelic circle (but not always to the 22° halo).[ citation needed ]

The intensity distribution of the parhelic circle is largely dominated by 1-3-2 and 1-3-8-2 rays (cf. the nomenclature by W. Tape, i.e. 1 denotes the top hexagonal face, 2 the bottom face, and 3-8 enumerate the side faces in counter-clockwise fashion. A ray is notated by the sequence in which it encounters the prism faces). The former ray-path is responsible for the blue spot halo which occurs at an azimuth. [6]

,

with being the material's index of refraction (not the Bravais index of refraction for inclined rays). However, many more features give a structure to the intensity pattern of the parhelic circle. [7] [8] Among the features of the parhelic circle are the Liljequist parhelia, the 90° parhelia (likely unobservable), the second order 90° parhelia (unobservable), the 22° parhelia and more.

Artificial parhelic circles can be realized by experimental means using, for instance, spinning crystals.

See also

Related Research Articles

<span class="mw-page-title-main">Snell's law</span> Formula for refraction angles

Snell's law is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air. In optics, the law is used in ray tracing to compute the angles of incidence or refraction, and in experimental optics to find the refractive index of a material. The law is also satisfied in meta-materials, which allow light to be bent "backward" at a negative angle of refraction with a negative refractive index.

<span class="mw-page-title-main">Sun dog</span> Atmospheric optical phenomenon

A sun dog or mock sun, also called a parhelion in meteorology, is an atmospheric optical phenomenon that consists of a bright spot to one or both sides of the Sun. Two sun dogs often flank the Sun within a 22° halo.

<span class="mw-page-title-main">Halo (optical phenomenon)</span> Optical phenomenon of the sky

A halo is an optical phenomenon produced by light interacting with ice crystals suspended in the atmosphere. Halos can have many forms, ranging from colored or white rings to arcs and spots in the sky. Many of these appear near the Sun or Moon, but others occur elsewhere or even in the opposite part of the sky. Among the best known halo types are the circular halo, light pillars, and sun dogs, but many others occur; some are fairly common while others are extremely rare.

<span class="mw-page-title-main">Antisolar point</span> Point on the celestial sphere opposite Sun

The antisolar point is the abstract point on the celestial sphere directly opposite the Sun from an observer's perspective. This means that the antisolar point lies above the horizon when the Sun is below it, and vice versa. On a sunny day, the antisolar point can be easily found; it is located within the shadow of the observer's head. Like the zenith and nadir, the antisolar point is not fixed in three-dimensional space, but is defined relative to the observer. Each observer has an antisolar point that moves as the observer changes position.

<span class="mw-page-title-main">Anthelion</span> Rare optical phenomenon

An anthelion is a rare optical phenomenon of the halo family. It appears on the parhelic circle opposite to the Sun as a faint white spot, not unlike a sundog, and may be crossed by an X-shaped pair of diffuse arcs.

<span class="mw-page-title-main">Rainbow</span> Meteorological phenomenon

A rainbow is an optical phenomenon caused by refraction, internal reflection and dispersion of light in water droplets resulting in a continuous spectrum of light appearing in the sky. The rainbow takes the form of a multicoloured circular arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the Sun. Rainbows can be caused by many forms of airborne water. These include not only rain, but also mist, spray, and airborne dew.

<span class="mw-page-title-main">Circumhorizontal arc</span> Optical phenomenon

A circumhorizontal arc is an optical phenomenon that belongs to the family of ice halos formed by the refraction of sunlight or moonlight in plate-shaped ice crystals suspended in the atmosphere, typically in actual cirrus or cirrostratus clouds. In its full form, the arc has the appearance of a large, brightly spectrum-coloured band running parallel to the horizon, located far below the Sun or Moon. The distance between the arc and the Sun or Moon is twice as far as the common 22-degree halo. Often, when the halo-forming cloud is small or patchy, only fragments of the arc are seen. As with all halos, it can be caused by the Sun as well as the Moon.

<span class="mw-page-title-main">Circumzenithal arc</span> Optical phenomenon arising from refraction of sunlight through ice crystals

The circumzenithal arc, also called the circumzenith arc (CZA), upside-down rainbow, and the Bravais arc, is an optical phenomenon similar in appearance to a rainbow, but belonging to the family of halos arising from refraction of sunlight through ice crystals, generally in cirrus or cirrostratus clouds, rather than from raindrops. The arc is located at a considerable distance above the observed Sun and at most forms a quarter of a circle centered on the zenith. It has been called "a smile in the sky", its first impression being that of an upside-down rainbow. The CZA is one of the brightest and most colorful members of the halo family. Its colors, ranging from violet on top to red at the bottom, are purer than those of a rainbow because there is much less overlap in their formation.

<span class="mw-page-title-main">22° halo</span> Atmospheric optical phenomenon

A 22° halo is an atmospheric optical phenomenon that consists of a halo with an apparent radius of approximately 22° around the Sun or Moon. When visible around the Moon, it is also known as a moon ring, storm ring, or winter halo. It forms as sunlight or moonlight is refracted by millions of hexagonal ice crystals suspended in the atmosphere. Its radius, as viewed from Earth, is roughly the length of an outstretched hand at arm's length.

<span class="mw-page-title-main">120° parhelion</span>

A 120° parhelion is a relatively rare halo, an optical phenomenon occasionally appearing along with very bright sun dogs when ice crystal-saturated cirrus clouds fill the atmosphere. The 120° parhelia are named for appearing in pair on the parhelic circle ±120° from the sun.

An infralateral arc is a rare halo, an optical phenomenon appearing similar to a rainbow under a white parhelic circle. Together with the supralateral arc they are always located outside the seldom observable 46° halo, but in contrast to supralateral arcs, infralateral arcs are always located below the parhelic circle.

<span class="mw-page-title-main">46° halo</span> Atmospheric optical phenomenon

A 46° halo is a rare atmospheric optical phenomenon that consists of a halo with an apparent radius of approximately 46° around the Sun. At solar elevations of 15–27°, 46° halos are often confused with the less rare and more colourful supralateral and infralateral arcs, which cross the parhelic circle at about 46° to the left and right of the sun.

<span class="mw-page-title-main">Subparhelic circle</span>

The subparhelic circle is a rare halo, an optical phenomenon, located below the horizon. It passes through both the subsun and the antisolar point. The subparhelic circle is the subhorizon counterpart to the parhelic circle, located above the horizon.

A Liljequist parhelion is a rare halo, an optical phenomenon in the form of a brightened spot on the parhelic circle approximately 150–160° from the sun; i.e., between the position of the 120° parhelion and the anthelion.

<span class="mw-page-title-main">Parry arc</span> Optical phenomenon

A Parry arc is a rare halo, an optical phenomenon which occasionally appears over a 22° halo together with an upper tangent arc.

<i>Vädersolstavlan</i> Painting by Jacob Heinrich Elbfas

Vädersolstavlan is an oil-on-panel painting depicting a halo display, an atmospheric optical phenomenon, observed over Stockholm on 20 April 1535. It is named after the sun dogs appearing on the upper right part of the painting. While chiefly noted for being the oldest depiction of Stockholm in colour, it is arguably also the oldest Swedish landscape painting and the oldest depiction of sun dogs.

A subhelic arc is a rare halo, formed by internal reflection through ice crystals, that curves upwards from the horizon and touches the tricker arc above the anthelic point. Subhelic arcs result from ray entrance and exit through prism end faces with two intermediate internal reflections.

<span class="mw-page-title-main">Atmospheric optics</span> Study of the optical characteristics of the atmosphere or products of atmospheric processes

Atmospheric optics is "the study of the optical characteristics of the atmosphere or products of atmospheric processes .... [including] temporal and spatial resolutions beyond those discernible with the naked eye". Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". Nevertheless, the two terms are sometimes used interchangeably.

<span class="mw-page-title-main">Lowitz arc</span>

A Lowitz arc is an optical phenomenon that occurs in the atmosphere; specifically, it is a rare type of ice crystal halo that forms a luminous arc which extends inwards from a sun dog (parhelion) and may continue above or below the sun.

Atmospheric optics ray tracing codes - this article list codes for light scattering using ray-tracing technique to study atmospheric optics phenomena such as rainbows and halos. Such particles can be large raindrops or hexagonal ice crystals. Such codes are one of many approaches to calculations of light scattering by particles.

References

  1. "A magnificent halo". NOAA. 1980-12-21. Archived from the original on 2006-12-13. Retrieved 2007-04-14.
  2. Koby Harati. "Parhelic Circle". Atmospheric Optics. Retrieved 2007-04-15.
  3. Les Cowley. "Paraselenae & Paraselenic circle". Atmospheric Optics. Retrieved 2021-10-07.
  4. "Parhelic Circle". www.paraselene.de. Retrieved 2009-02-01. (including an excellent HaloSim simulation of a parhelic circle.)
  5. Les Cowley. "Parhelic Circle Formation". Atmospheric Optics. Retrieved 2007-04-15.
  6. Sillanpää, M.; Moilanen, J.; Riikonen, M.; Pekkola, M. (2001). "Blue spot on the parhelic circle". Applied Optics. 40 (30): 5275–5279. Bibcode:2001ApOpt..40.5275S. doi:10.1364/ao.40.005275. PMID   18364808.
  7. Selmke, M. (2015). "Artificial Halos". American Journal of Physics. 83 (9): 751–760. Bibcode:2015AmJPh..83..751S. doi:10.1119/1.4923458.
  8. Borchardt, S.; Selmke, M. (2015). "Intensity distribution of the parhelic circle and embedded parhelia at zero solar elevation: theory and experiments". Applied Optics. 54 (22): 6608–6615. Bibcode:2015ApOpt..54.6608B. doi:10.1364/AO.54.006608. PMID   26368071. S2CID   39382489.