Particle damping

Last updated

Particle damping is the use of particles moving freely in a cavity to produce a damping effect.

Contents

Introduction

Active and passive damping techniques are common methods of attenuating the resonant vibrations excited in a structure. Active damping techniques are not applicable under all circumstances due, for example, to power requirements, cost, environment, etc. Under such circumstances, passive damping techniques are a viable alternative. Various forms of passive damping exist, including viscous damping, viscoelastic damping, friction damping, and impact damping. Viscous and viscoelastic damping usually have a relatively strong dependence on temperature. Friction dampers, while applicable over wide temperature ranges, may degrade with wear. Due to these limitations, attention has been focused on impact dampers, particularly for application in cryogenic environments or at elevated temperatures.

Particle damping technology is a derivative of impact damping with several advantages. Impact damping refers to only a single (somewhat larger) auxiliary mass in a cavity, whereas particle damping is used to imply multiple auxiliary masses of small size in a cavity. The principle behind particle damping is the removal of vibratory energy through losses that occur during impact of granular particles which move freely within the boundaries of a cavity attached to a primary system. In practice, particle dampers are highly nonlinear dampers whose energy dissipation, or damping, is derived from a combination of loss mechanisms, including friction and momentum exchange. Because of the ability of particle dampers to perform through a wide range of temperatures and frequencies and survive for a longer life, they have been used in applications such as the weightless environments of outer space, [1] [2] in aircraft structures, to attenuate vibrations of civil structures, [3] and even in tennis rackets. [4]

Advantages of particle dampers

Therefore, they are suited for applications where there is a need for long service in harsh environments.

Analysis of particle damping

The analysis of particle dampers is mainly conducted by experimental testing, simulations by discrete element method or finite element method, and by analytical calculations. The discrete element method makes use of particle mechanics, whereby individual particles are modeled with 6-degrees of freedom dynamics and their interactions result in the amount of energy absorbed/dissipated. This approach, although requires high power computing and the dynamic interactions of millions of particles, it is promising and may be used to estimate the effects of various mechanisms on damping. For instance, a study was performed [5] using a model that simulated 10,000 particles in a cavity and studied the damping under various gravitational force effects.

Research literature review

A significant amount of research has been carried out in the area of analysis of particle dampers.

Olson [6] presented a mathematical model that allows particle damper designs to be evaluated analytically. The model utilized the particle dynamics method and took into account the physics involved in particle damping, including frictional contact interactions and energy dissipation due to viscoelasticity of the particle material.

Fowler et al. [7] discussed results of studies into the effectiveness and predictability of particle damping. Efforts were concentrated on characterizing and predicting the behaviour of a range of potential particle materials, shapes, and sizes in the laboratory environment, as well as at elevated temperature. Methodologies used to generate data and extract the characteristics of the nonlinear damping phenomena were illustrated with test results.

Fowler et al. [8] developed an analytical method, based on the particle dynamics method, that used characterized particle damping data to predict damping in structural systems. A methodology to design particle damping for dynamic structures was discussed. The design methodology was correlated with tests on a structural component in the laboratory.

Mao et al. [9] utilized DEM for computer simulation of particle damping. By considering thousands of particles as Hertz balls, the discrete element model was used to describe the motions of these multi-bodies and determine the energy dissipation.

Prasad et al. [10] have investigated the damping performance of twenty different granular materials, which can be used to design particle dampers for different industries. They have also introduced the hybrid particle damper concept in which two different types of granular materials are mixed in order to achieve significantly higher vibration reduction in comparison to the particle dampers with a single type of granular materials.

Prasad et al. [11] have developed a honeycomb damping plate concept, based on particle damping technique, to reduce low-frequency vibration amplitude from an onshore wind turbine generator.

Prasad et al. [12] have suggested three different strategies to implement particle dampers in a wind turbine blade to reduce the vibration amplitude.

Related Research Articles

<span class="mw-page-title-main">Shock absorber</span> Mechanical component

A shock absorber or damper is a mechanical or hydraulic device designed to absorb and damp shock impulses. It does this by converting the kinetic energy of the shock into another form of energy which is then dissipated. Most shock absorbers are a form of dashpot.

<span class="mw-page-title-main">Tuned mass damper</span> Device designed to reduce vibrations in structures

A tuned mass damper (TMD), also known as a harmonic absorber or seismic damper, is a device mounted in structures to reduce mechanical vibrations, consisting of a mass mounted on one or more damped springs. Its oscillation frequency is tuned to be similar to the resonant frequency of the object it is mounted to, and reduces the object's maximum amplitude while weighing much less than it.

<span class="mw-page-title-main">Soundproofing</span> Methods to reduce sound pressure

Soundproofing is any means of reducing the sound pressure with respect to a specified sound source and receptor. There are several basic approaches to reducing sound: increasing the distance between source and receiver, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles, or using active antinoise sound generators.

<span class="mw-page-title-main">Magnetorheological fluid</span>

A magnetorheological fluid is a type of smart fluid in a carrier fluid, usually a type of oil. When subjected to a magnetic field, the fluid greatly increases its apparent viscosity, to the point of becoming a viscoelastic solid. Importantly, the yield stress of the fluid when in its active ("on") state can be controlled very accurately by varying the magnetic field intensity. The upshot is that the fluid's ability to transmit force can be controlled with an electromagnet, which gives rise to its many possible control-based applications.

<span class="mw-page-title-main">Granular material</span> Conglomeration of discrete solid, macroscopic particles

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

A dashpot, also known as a damper, is a mechanical device that resists motion via viscous friction. The resulting force is proportional to the velocity, but acts in the opposite direction, slowing the motion and absorbing energy. It is commonly used in conjunction with a spring. The process and instrumentation diagram (P&ID) symbol for a dashpot is .

<span class="mw-page-title-main">Earthquake engineering</span> Interdisciplinary branch of engineering

Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. Earthquake engineering is the scientific field concerned with protecting society, the natural environment, and the man-made environment from earthquakes by limiting the seismic risk to socio-economically acceptable levels. Traditionally, it has been narrowly defined as the study of the behavior of structures and geo-structures subject to seismic loading; it is considered as a subset of structural engineering, geotechnical engineering, mechanical engineering, chemical engineering, applied physics, etc. However, the tremendous costs experienced in recent earthquakes have led to an expansion of its scope to encompass disciplines from the wider field of civil engineering, mechanical engineering, nuclear engineering, and from the social sciences, especially sociology, political science, economics, and finance.

Sorbothane is the brand name of a synthetic viscoelastic urethane polymer used as a shock absorber and vibration damper. It is manufactured by Sorbothane, Inc., based in Kent, Ohio.

Vibration isolation is the process of isolating an object, such as a piece of equipment, from the source of vibrations.

<span class="mw-page-title-main">QuietRock</span>

QuietRock is a brand of constrained-layer damped gypsum panels manufactured in Newark, California, by PABCO Gypsum. QuietRock was developed in 2003 by Kevin Surace and Brandon D. Tinianov, the first sound-reducing gypsum wallboard panel for use in the building construction industry. QuietRock panels are engineered to increase sound transmission loss (STL) performance and, consequently, the Sound Transmission Class (STC) rating for building partitions using sound and vibration theory.

This is an alphabetical list of articles pertaining specifically to Engineering Science and Mechanics (ESM). For a broad overview of engineering, please see Engineering. For biographies please see List of engineers and Mechanicians.

Noise, vibration, and harshness (NVH), also known as noise and vibration (N&V), is the study and modification of the noise and vibration characteristics of vehicles, particularly cars and trucks. While noise and vibration can be readily measured, harshness is a subjective quality, and is measured either via jury evaluations, or with analytical tools that can provide results reflecting human subjective impressions. The latter tools belong to the field psychoacoustics.

The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures under different atmospheres.

Contact dynamics deals with the motion of multibody systems subjected to unilateral contacts and friction. Such systems are omnipresent in many multibody dynamics applications. Consider for example

Machining vibrations, also called chatter, correspond to the relative movement between the workpiece and the cutting tool. The vibrations result in waves on the machined surface. This affects typical machining processes, such as turning, milling and drilling, and atypical machining processes, such as grinding.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin vibrationem. The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.

<span class="mw-page-title-main">Harmonic damper</span>

A harmonic damper is a device fitted to the free end of the crankshaft of an internal combustion engine to counter torsional and resonance vibrations from the crankshaft. This device must be interference fit to the crankshaft in order to operate in an effective manner. An interference fit ensures the device moves in perfect step with the crankshaft. It is essential on engines with long crankshafts and V8 engines with cross plane cranks, or V6 and straight-three engines with uneven firing order. Harmonics and torsional vibrations can greatly reduce crankshaft life, or cause instantaneous failure if the crankshaft runs at or through an amplified resonance. Dampers are designed with a specific weight (mass) and diameter, which are dependent on the damping material/method used, to reduce mechanical Q factor, or damp, crankshaft resonances.

<span class="mw-page-title-main">Mass-spring-damper model</span>

The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity. Packages such as MATLAB may be used to run simulations of such models. As well as engineering simulation, these systems have applications in computer graphics and computer animation.

Broadband viscoelastic spectroscopy (BVS) is a technique for studying viscoelastic solids in both bending and torsion. It provides the ability to measure viscoelastic behavior over eleven decades (orders of magnitude) of time and frequency: from 10−6 to 105 Hz. BVS is typically either used to investigate viscoelastic properties isothermally over a large frequency range or as a function of temperature at a single frequency. It is capable of measuring mechanical properties directly over these frequency and temperature ranges; as such, it does not require time-temperature superposition or the assumption that material properties obey an Arrhenius-type temperature dependence. As a result, it can be used for heterogeneous and anisotropic specimens for which these assumptions do not apply. BVS is often used for the determination of attenuation coefficients, dynamic moduli, and especially damping ratios.

Anelasticity is a property of materials that describes their behaviour when undergoing deformation. Its formal definition does not include the physical or atomistic mechanisms but still interprets the anelastic behaviour as a manifestation of internal relaxation processes. It's a special case of elastic behaviour.

References

  1. H.V. Panossian, Structural damping enhancement via non-obstructive particle damping technique, Journal of Vibration and Acoustics, 114 (1992), pp. 101–105.
  2. R. Ehrgott, H. Panossian & G. Davis, Modelling techniques for evaluating the effectiveness of particle damping in turbomachinery, Pratt & Whitney Rocketdyne, Canoga Park, CA. PDF
  3. S.S. Simonian, Particle beam damper, Proceedings of the SPIE, 2445 (1995), pp. 149–160.
  4. S. Ashley, A new racket shakes up tennis, Mechanical Engineering, 117 (1995), pp. 80–81.
  5. Non-obstructive Particle Damping Experience and Capabilities, Panossian, H., Proceedings- Spie The International Society For Optical Engineering, 2002, ISSU 4753; VOL 2, pages 936-941. PDF Archived 2016-03-04 at the Wayback Machine
  6. Steven E. Olson, An analytical particle damping model, Journal of Sound and Vibration, 264 (2003), pp. 1155–1166. doi : 10.1016/S0022-460X(02)01388-3
  7. Bryce L. Fowler, Eric M. Flint, Steven E. Olson, Effectiveness and Predictability of Particle Damping, Proceedings of SPIE Volume 3989, Smart Structures and Materials 2000, Damping and Isolation, 2000. PDF Archived 2011-09-11 at the Wayback Machine
  8. Bryce L. Fowler, Eric M. Flint, Steven E. Olson, Design Methodology for Particle Damping, SPIE Conference on Smart Structures and Materials, 2001. PDF Archived 2012-03-25 at the Wayback Machine
  9. Kuanmin Mao, Michael Yu Wang, Zhiwei Xu, Tianning Chen, DEM simulation of particle damping, Powder Technology, 142 (2004), pp. 154– 165. doi : 10.1016/j.powtec.2004.04.031
  10. Prasad B. B.; Duvigneau, F.; Juhre, D.; Woschke, E. Damping performance of particle dampers with different granular materials and their mixtures, Applied Acoustics 2022, 200, 109059. doi : 10.1016/j.apacoust.2022.109059
  11. Prasad B. B.; Duvigneau, F.; Juhre, D.; Woschke, E. Application of Particle Dampers on a Scaled Wind Turbine Generator to Improve Low-Frequency Vibro-Acoustic Behavior, Appl. Sci. 2022, 12, 671. doi : 10.3390/app12020671
  12. Prasad B. B.; Duvigneau, F.; Juhre, D.; Woschke, E. Experimental study of particle dampers applied to wind turbine blades to reduce low-frequency sound emission, Proceedings of INTER-NOISE and NOISE-CON Congress and Conference Proceedings. 2021. doi : 10.3397/IN-2021-1125