Pastonian Stage

Last updated

The Pastonian interglacial, now called the Pastonian Stage (from Paston, Norfolk), is the name for an early or middle Pleistocene stage of geological history in the British Isles. It precedes the Beestonian Stage and follows the Pre-Pastonian Stage. Unfortunately the precise age of this stage cannot yet be defined in terms of absolute dating or MIS stages. The Pre-Pastonian Stage is equivalent to the Tiglian C5-6 Stage of Europe and the Pre-Illinoian I glaciation of the early Pre-Illinoian Stage of North America. [1] [2] [3] [4]

Contents

Deciduous woodland increased, including species such as Hornbeam (Carpinus), Elm (Ulmus), Hazel (Corylus), and Spruce (Picea). Towards the end of the period, there is evidence for a fall in sea levels and an increase in grassland species.

Related Research Articles

<span class="mw-page-title-main">Timeline of glaciation</span> Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

<span class="mw-page-title-main">Anglian stage</span> Period of the Pleistocene epoch

The Anglian Stage is the name used in the British Isles for a middle Pleistocene glaciation. It precedes the Hoxnian Stage and follows the Cromerian Stage in the British Isles. The Anglian Stage is correlated to Marine Isotope Stage 12, which started about 478,000 years ago and ended about 424,000 years ago.

The Cromerian Stage or Cromerian Complex, also called the Cromerian, is a stage in the Pleistocene glacial history of north-western Europe, mostly occurring more than half a million years ago. It is named after the East Anglian town of Cromer in Great Britain where interglacial deposits that accumulated during part of this stage were first discovered. The stratotype for this interglacial is the Cromer Forest Bed situated at the bottom of the coastal cliff near West Runton. The Cromerian stage preceded the Anglian and Elsterian glacials and show an absence of glacial deposits in western Europe, which led to the historical terms Cromerian interglacial and the Cromerian warm period. It is now known that the Cromerian consisted of multiple glacial and interglacial periods.

The Hoxnian Stage was a middle Pleistocene stage of the geological history of the British Isles. It was an interglacial which preceded the Wolstonian Stage and followed the Anglian Stage. It is equivalent to Marine Isotope Stage 11. Marine Isotope Stage 11 started 424,000 years ago and ended 374,000 years ago. The Hoxnian is divided into sub-stages Ho I to Ho IV.

The Wolstonian Stage is a middle Pleistocene stage of the geological history of Earth from approximately 374,000 until 130,000 years ago. It precedes the Eemian Stage in Europe and follows the Hoxnian Stage in the British Isles.

The Illinoian Stage is the name used by Quaternary geologists in North America to designate the period c.191,000 to c.130,000 years ago, during the Chibanian stage of the Pleistocene, when sediments comprising the Illinoian Glacial Lobe were deposited. It precedes the Sangamonian Stage and follows the Pre-Illinoian Stage in North America. The Illinoian Stage is defined as the period of geologic time during which the glacial tills and outwash, which comprise the bulk of the Glasford Formation, accumulated to create the Illinoian Glacial Lobe. It occurs at about the same time as the penultimate glacial period.

<span class="mw-page-title-main">Elster glaciation</span>

The Elster glaciation or, less commonly, the Elsterian glaciation, in the older and popular scientific literature also called the Elster Ice Age (Elster-Eiszeit), is the oldest known ice age that resulted in the large-scale glaciation of North Germany. It took place 500,000–300,000 years ago. It succeeded a long period of rather warmer average temperatures, the Cromerian Complex. The Elster was followed by the Holstein interglacial and the Saale glaciation. The glacial period is named after the White Elster, a right tributary of the Saale.

<span class="mw-page-title-main">Mindel glaciation</span>

The Mindel glaciation is the third youngest glacial stage in the Alps. Its name was coined by Albrecht Penck and Eduard Brückner, who named it after the Swabian river, the Mindel. The Mindel glacial occurred in the Middle Pleistocene; it was preceded by the Haslach-Mindel interglacial and succeeded by the Mindel-Riss interglacial.

The Beestonian Stage is an early Pleistocene stage in the geological history of the British Isles. It is named after Beeston Cliffs near West Runton in Norfolk where deposits from this stage are preserved.

The Pre-Pastonian Stage or Baventian Stage, is the name for an early Pleistocene stage of geological history in the British Isles. It precedes the Pastonian Stage and follows the Bramertonian Stage. This stage ended 1.806 Ma at the end of Marine Isotope Stage 65. It is not currently known when this stage started. The Pre-Pastonian Stage is equivalent to the Tiglian C4c Stage of Europe and the Pre-Illinoian J glaciation of the early Pre-Illinoian Stage of North America.

The Bramertonian Stage is the name for an early Pleistocene biostratigraphic stage of geological history the British Isles. It precedes the Pre-Pastonian Stage. It derives its name from Bramerton Pits in Norfolk, where the deposits can be found on the surface. The exact timing of the beginning and end of the Bramertonian Stage is currently unknown. It is only known that it is equivalent to the Tiglian C1-4b Stage of Europe and early Pre-Illinoian Stage of North America. It lies somewhere in time between Marine Oxygen Isotope stages 65 to 95 and somewhere between 1.816 and 2.427 Ma. The Bramertonian is correlated with the Antian stage identified from pollen assemblages in the Ludham borehole.

<span class="mw-page-title-main">Marine isotope stages</span> Alternating warm and cool periods in the Earths paleoclimate, deduced from oxygen isotope data

Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data derived from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies.

The Plio-Pleistocene is an informally described geological pseudo-period, which begins about 5 million years ago (Mya) and, drawing forward, combines the time ranges of the formally defined Pliocene and Pleistocene epochs—marking from about 5 Mya to about 12 kya. Nominally, the Holocene epoch—the last 12 thousand years—would be excluded, but most Earth scientists would probably treat the current times as incorporated into the term "Plio-Pleistocene"; see below.

The Holstein interglacial, also called the Mindel-Riss interglacial (Mindel-Riß-Interglazial) in the Alpine region, is the third to last major interglacial before the Holocene, the present warm period. It followed directly after the Elster glaciation and came before the Saale glaciation, during the Middle Pleistocene. The more precise timing is controversial since Holstein is commonly correlated to two different marine isotope stages, MIS 11 and MIS 9. This ambiguity is much related to the correlation problem described in more detail in the article 'Elster glaciation'.

In geochemistry, paleoclimatology and paleoceanography δ18O or delta-O-18 is a measure of the deviation in ratio of stable isotopes oxygen-18 (18O) and oxygen-16 (16O). It is commonly used as a measure of the temperature of precipitation, as a measure of groundwater/mineral interactions, and as an indicator of processes that show isotopic fractionation, like methanogenesis. In paleosciences, 18O:16O data from corals, foraminifera and ice cores are used as a proxy for temperature.

The Pre-Illinoian Stage is used by Quaternary geologists for the early and middle Pleistocene glacial and interglacial periods of geologic time in North America from ~2.5–0.2 Ma.

Lorraine Lisiecki is an American paleoclimatologist. She is a professor in the Department of Earth Sciences at the University of California, Santa Barbara. She has proposed a new analysis of the 100,000-year problem in the Milankovitch theory of climate change. She also created the analytical software behind the LR04, a "standard representation of the climate history of the last five million years".

<span class="mw-page-title-main">Maureen Raymo</span> American paleoclimatologist and marine geologist

Maureen E. "Mo" Raymo is an American paleoclimatologist and marine geologist. She is the Co-Founding Dean of the Columbia Climate School, Director of the Lamont–Doherty Earth Observatory of Columbia University, the G. Unger Vetlesen Professor of Earth & Environmental Sciences, and Director of the Lamont–Doherty Core Repository at the Lamont–Doherty Earth Observatory of Columbia University. She is the first female climate scientist and first female scientist to head the institution.

<span class="mw-page-title-main">Marine Isotope Stage 9</span>

Marine Isotope Stage 9 was an interglacial period that consisted of two interstadial and one stadial period. It is the final period of the Lower Paleolithic and lasted from 337,000 to 300,000 years ago according to Lisiecki and Raymo's LR04 Benthic Stack. It corresponds to the Purfleet Interglacial in Britain, the Holstein Interglacial in continental Europe, and the Pre-Illinoian in North America.

<span class="mw-page-title-main">Don Glaciation</span> Major glaciation of eastern Europe

The Don Glaciation, also known as the Donian Glaciation and the Donian Stage, was the major glaciation of the East European Plain, 0.5–0.8 million years ago, during the Cromerian Stage of the Middle Pleistocene. It is correlated to Marine Isotope Stage 16, approximately 650,000 years ago, which globally contained one of the largest glacial volumes of the Quaternary.

References

  1. McMillan, A.A. (2005). "A provisional Quaternary and Neogene lithostratigraphic framework Great Britain" (PDF). Netherland Journal of Geosciences. 84 (2): 87–107. doi: 10.1017/S0016774600022988 .
  2. Gibbard, P.L., S. Boreham, K.M. Cohen and A. Moscariello, 2007, Global chronostratigraphical correlation table for the last 2.7 million years v. 2007b, jpg version 844 KB. Subcommission on Quaternary Stratigraphy, Department of Geography, University of Cambridge, Cambridge, England
  3. Lisiecki, L.E., 2005, Ages of MIS boundaries. LR04 Benthic Stack Boston University, Boston, MA
  4. Lisiecki, L. E.; Raymo, M. E. (January 2005). "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records" (PDF). Paleoceanography. 20 (1): PA1003. Bibcode:2005PalOc..20.1003L. doi:10.1029/2004PA001071. hdl: 2027.42/149224 .
    Lisiecki, L. E.; Raymo, M. E. (May 2005). "Correction to "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records"". Paleoceanography. 20 (2): PA2007. Bibcode:2005PalOc..20.2007L. doi: 10.1029/2005PA001164 .
    data: doi : 10.1594/PANGAEA.704257.

Further reading

See also