Patient DF

Last updated

Patient DF is a woman with visual apperceptive agnosia who has been studied extensively due to the implications of her behavior for the two streams theory of visual perception. Though her vision remains intact, she has trouble visually locating and identifying objects. Despite being unable to identify or recognize objects, DF can still use visual input to guide her action.

Contents

Her agnosia is thought to be caused by a bilateral lesion to her lateral occipital cortex, an area thought by dual-stream proponents to be the ventral "object recognition" stream. [1]

Lesion

DF Lesion Graphic-5.large.jpg
DF Lesion

Patient DF's brain damage resulted from hypoxia due to accidental carbon monoxide poisoning in 1988, when she was 34 years old. [2] The lateral occipital cortex (LOC) in her brain is severely damaged and shows no activation presented with line drawings of common objects where healthy people usually do. Moreover, there is a reduction of white matter connections between LOC and other areas. [3] There is also some shrinkage in the intraparietal sulcus, often implicated in the dorsal stream for visuomotor control. The fusiform face area is intact. This would suggest the problem in DF's perception is disconnectivity between higher and lower order functioning. [4]

Recent MRIs have shown many enlarged sulci, like the intraparietal sulcus, parieto-occipital sulcus, and left calcarine sulcus, indicating atrophy. [4] Her visual field remains intact up to 30 degrees. [1]

Performance

Like most apperceptive agnosics, DF cannot name an object from its appearance purely, or copy a line drawing. She can draw familiar objects from memory. DF can also differentiate color, motion and patterns—given an image and its scrambled version, she can tell them apart [4] —but if shown different shapes in the same color and pattern, she is at chance at differentiating the two. [1] She can identify 67% of grayscale and color images, but only 10% of line drawings.

Despite her inability to identify objects by shape, her actions seem to reflect a deeper understanding than she reports: DF correctly orients her hand to post a letter through a slot, picks up pebble-like objects at secure grasp points, and scales her grip correctly to pick up Efron blocks (which match in surface area, texture, mass, and color, and differ only in length and width). [5]

And yet, Patient DF cannot judge the width of an object, such as a guitar pick, by using her thumb and forefinger to show how big it is. However, when asked to pick it up, her hand moves to the correct width. [1] Her estimates (she is asked to put her thumb and forefinger the correct distance apart without moving to grasp the object) still do not improve thereafter, but she continues to accurately pick up the object, indicating that she cannot judge features of the object on command but is able to control her actions with that information.

DF does not benefit from haptic feedback—allowing her to pick up an object does not let her better estimate its width next time. [5] DF also does not use visual information about her grasp: when she can only see her grip in a distorted mirror, her performance does not change. [4] Consistent with all of this, brain imaging has shown no response to line drawings in her ventral stream. Furthermore, according to fMRI studies, the intraparietal sulcus showed preference for grasping motions over reaching motions—actually grabbing an object, in both DF and control patients, activates the intraparietal sulcus more than reaching. [4]

Implications

It is safe to say that "behavioural dissociation between action and perception, coupled with the neuroanatomical and functional neuroimaging findings suggest that the preserved visual control of grasping in DF is mediated by relatively intact visuomotor networks in her dorsal stream, whereas her failure to perceive the form of objects is a consequence of damage to her ventral stream". [1]

Along with double dissociations shown in monkeys, DF's experience provides evidence for the two streams theory of visual perception [4] and shows that the dorsal stream alone may provide information for aperture scaling. Some of the results from DF have been called into question due to the role of haptic feedback in DF's grasping and perception task performance.

Related Research Articles

<span class="mw-page-title-main">Visual cortex</span> Region of the brain that processes visual information

The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 (V1), Brodmann area 17, or the striate cortex. The extrastriate areas consist of visual areas 2, 3, 4, and 5.

<span class="mw-page-title-main">Agnosia</span> Inability to process sensory information

Agnosia is a neurological disorder characterized by an inability to process sensory information. Often there is a loss of ability to recognize objects, persons, sounds, shapes, or smells while the specific sense is not defective nor is there any significant memory loss. It is usually associated with brain injury or neurological illness, particularly after damage to the occipitotemporal border, which is part of the ventral stream. Agnosia only affects a single modality, such as vision or hearing. More recently, a top-down interruption is considered to cause the disturbance of handling perceptual information.

<span class="mw-page-title-main">Parietal lobe</span> Part of the brain responsible for sensory input and some language processing

The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus.

<span class="mw-page-title-main">Occipital lobe</span> Part of the brain at the back of the head

The occipital lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The name derives from its position at the back of the head, from the Latin ob, 'behind', and caput, 'head'.

Astereognosis is the inability to identify an object by active touch of the hands without other sensory input, such as visual or sensory information. An individual with astereognosis is unable to identify objects by handling them, despite intact elementary tactile, proprioceptive, and thermal sensation. With the absence of vision, an individual with astereognosis is unable to identify what is placed in their hand based on cues such as texture, size, spatial properties, and temperature. As opposed to agnosia, when the object is observed visually, one should be able to successfully identify the object.

<span class="mw-page-title-main">Associative visual agnosia</span> Medical condition

Associative visual agnosia is a form of visual agnosia. It is an impairment in recognition or assigning meaning to a stimulus that is accurately perceived and not associated with a generalized deficit in intelligence, memory, language or attention. The disorder appears to be very uncommon in a "pure" or uncomplicated form and is usually accompanied by other complex neuropsychological problems due to the nature of the etiology. Affected individuals can accurately distinguish the object, as demonstrated by the ability to draw a picture of it or categorize accurately, yet they are unable to identify the object, its features or its functions.

The two-streams hypothesis is a model of the neural processing of vision as well as hearing. The hypothesis, given its initial characterisation in a paper by David Milner and Melvyn A. Goodale in 1992, argues that humans possess two distinct visual systems. Recently there seems to be evidence of two distinct auditory systems as well. As visual information exits the occipital lobe, and as sound leaves the phonological network, it follows two main pathways, or "streams". The ventral stream leads to the temporal lobe, which is involved with object and visual identification and recognition. The dorsal stream leads to the parietal lobe, which is involved with processing the object's spatial location relative to the viewer and with speech repetition.

Visual agnosia is an impairment in recognition of visually presented objects. It is not due to a deficit in vision, language, memory, or intellect. While cortical blindness results from lesions to primary visual cortex, visual agnosia is often due to damage to more anterior cortex such as the posterior occipital and/or temporal lobe(s) in the brain.[2] There are two types of visual agnosia, apperceptive and associative.

<span class="mw-page-title-main">Inferior temporal gyrus</span> One of three gyri of the temporal lobe of the brain

The inferior temporal gyrus is one of three gyri of the temporal lobe and is located below the middle temporal gyrus, connected behind with the inferior occipital gyrus; it also extends around the infero-lateral border on to the inferior surface of the temporal lobe, where it is limited by the inferior sulcus. This region is one of the higher levels of the ventral stream of visual processing, associated with the representation of objects, places, faces, and colors. It may also be involved in face perception, and in the recognition of numbers and words.

Akinetopsia, also known as cerebral akinetopsia or motion blindness, is a term introduced by Semir Zeki to describe an extremely rare neuropsychological disorder, having only been documented in a handful of medical cases, in which a patient cannot perceive motion in their visual field, despite being able to see stationary objects without issue. The syndrome is the result of damage to visual area V5, whose cells are specialized to detect directional visual motion. There are varying degrees of akinetopsia: from seeing motion as frames of a cinema reel to an inability to discriminate any motion. There is currently no effective treatment or cure for akinetopsia.

<span class="mw-page-title-main">Intraparietal sulcus</span> Sulcus on the lateral surface of the parietal lobe

The intraparietal sulcus (IPS) is located on the lateral surface of the parietal lobe, and consists of an oblique and a horizontal portion. The IPS contains a series of functionally distinct subregions that have been intensively investigated using both single cell neurophysiology in primates and human functional neuroimaging. Its principal functions are related to perceptual-motor coordination and visual attention, which allows for visually-guided pointing, grasping, and object manipulation that can produce a desired effect.

<span class="mw-page-title-main">Cerebral achromatopsia</span> Medical condition

Cerebral achromatopsia is a type of color blindness caused by damage to the cerebral cortex of the brain, rather than abnormalities in the cells of the eye's retina. It is often confused with congenital achromatopsia but underlying physiological deficits of the disorders are completely distinct. A similar, but distinct, deficit called color agnosia exists in which a person has intact color perception but has deficits in color recognition, such as knowing which color they are looking at.

In cognitive neuroscience, visual modularity is an organizational concept concerning how vision works. The way in which the primate visual system operates is currently under intense scientific scrutiny. One dominant thesis is that different properties of the visual world require different computational solutions which are implemented in anatomically/functionally distinct regions that operate independently – that is, in a modular fashion.

The Riddoch syndrome is a term coined by Zeki and Ffytche (1998) in a paper published in Brain. The term acknowledges the work of George Riddoch who was the first to describe a condition in which a form of visual impairment, caused by lesions in the occipital lobe, leaves the sufferer blind but able to distinguish visual stimuli with specific characteristics when these appear in the patient's blind field. The most common stimuli that can be perceived consciously are the presence and direction of fast moving objects ; in his work these moving objects were described as "vague and shadowy". Riddoch concluded from his observations that "movement may be recognized as a special visual perception".

Apperceptive agnosia is a neurological disorder characterized by failures in recognition due to a failure of perception. In contrast, associative agnosia is a type of agnosia where perception occurs but recognition still does not occur. When referring to apperceptive agnosia, visual and object agnosia are most commonly discussed; this occurs because apperceptive agnosia is most likely to present visual impairments. However, in addition to visual apperceptive agnosia there are also cases of apperceptive agnosia in other sensory areas.

The neuroanatomy of memory encompasses a wide variety of anatomical structures in the brain.

Discrete categories of objects such as faces, body parts, tools, animals and buildings have been associated with preferential activation in specialised areas of the cerebral cortex, leading to the suggestion that they may be produced separately in discrete neural regions.

<span class="mw-page-title-main">Superior temporal sulcus</span> Part of the brains temporal lobe

In the human brain, the superior temporal sulcus (STS) is the sulcus separating the superior temporal gyrus from the middle temporal gyrus in the temporal lobe of the brain. A sulcus is a deep groove that curves into the largest part of the brain, the cerebrum, and a gyrus is a ridge that curves outward of the cerebrum.

Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context.

<span class="mw-page-title-main">Melvyn A. Goodale</span>

Melvyn Alan Goodale FRSC, FRS is a Canadian neuroscientist. He was the founding Director of the Brain and Mind Institute at the University of Western Ontario where he holds the Canada Research Chair in Visual Neuroscience. He holds appointments in the Departments of Psychology, Physiology & Pharmacology, and Ophthalmology at Western. Goodale's research focuses on the neural substrates of visual perception and visuomotor control.

References

  1. 1 2 3 4 5 Whitwell RL, Milner AD, Cavina-Pratesi C, Barat M, Goodale MA (May 2015). "Patient DF's visual brain in action: Visual feedforward control in visual form agnosia". Vision Research. 110 (Pt B): 265–76. doi: 10.1016/j.visres.2014.08.016 . PMID   25199609.
  2. Milner, A. D.; et al. (1991). "Perception and action in 'visual form agnosia'". Brain. 114 (1): 405–428.
  3. Bridge H, Thomas OM, Minini L, Cavina-Pratesi C, Milner AD, Parker AJ (July 2013). "Structural and functional changes across the visual cortex of a patient with visual form agnosia". The Journal of Neuroscience. 33 (31): 12779–91. doi:10.1523/JNEUROSCI.4853-12.2013. PMC   6618540 . PMID   23904613.
  4. 1 2 3 4 5 6 James TW, Culham J, Humphrey GK, Milner AD, Goodale MA (November 2003). "Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study". Brain: A Journal of Neurology. 126 (Pt 11): 2463–75. doi: 10.1093/brain/awg248 . PMID   14506065.
  5. 1 2 Whitwell RL, Milner AD, Goodale MA (2014). "The Two Visual Systems Hypothesis: New Challenges and Insights from Visual form Agnosic Patient DF". Frontiers in Neurology. 5: 255. doi: 10.3389/fneur.2014.00255 . PMC   4259122 . PMID   25538675.