Percolation surface critical behavior

Last updated

Percolation surface critical behavior concerns the influence of surfaces on the critical behavior of percolation.

Contents

Background

Percolation is the study of connectivity in random systems, such as electrical conductivity in random conductor/insulator systems, fluid flow in porous media, gelation in polymer systems, etc. At a critical fraction of connectivity or porosity, long-range connectivity can take place, leading to long-range flow. The point where that connectivity takes place is called the percolation threshold, and considerable amount of work has been undertaken in finding those critical values for systems of various geometries, and the mathematical behavior of observables near that point. This leads to the study of critical behavior and the percolation critical exponents. These exponents allow one to describe the behavior as the threshold is approached.

The behavior of the percolating network near a surface will be different from that in the main part of a system, called the "bulk." For example, exact at the percolation threshold, the percolating network in the system is a fractal with large voids and a ramified structure. The surface interrupts this structure, so the percolating cluster is less likely to come in contact to the surface. As an example, consider a lattice system of bond percolation (percolation along the bonds or edges of the lattice). If the lattice is cubic in nature, and is the probability that a bond is occupied (conducting), then the percolation threshold is known to be . At the surface, the lattice becomes a simple square lattice, where the bond threshold is simply 1/2. Therefore, when the bulk of the system is at its threshold, the surface is way below its threshold, and the only way to have long-range connections along the surface is to have a path that goes from the surface to the bulk, conduction through the fractal percolation network, and then a path back to the surface again. This occurs with a different critical behavior as in the bulk, and is different from the critical behavior of a two-dimensional surface at its threshold.

In the most common model for surface critical behavior in percolation, all bonds are assigned with the same probability , and the behavior is studied at the bulk , with a value of 0.311608 in this case. In an other model for surface behavior, the surface bonds are made occupied with a different probability , while the bulk is kept at the normal bulk value. When is increased to a higher value, a new "special" critical point is reached , which has a different set of critical exponents.

Surface phase transitions

Different surface phase transitions can occur depending on the values of the bulk occupation probability
p
{\displaystyle p}
and the surface occupation probability
p
s
{\displaystyle p_{s}}
. BP and SP stand for 'bulk percolating' and 'surface percolating' respectively. Percolation surface transitions (corrected).png
Different surface phase transitions can occur depending on the values of the bulk occupation probability and the surface occupation probability . BP and SP stand for 'bulk percolating' and 'surface percolating' respectively.

In percolation, we can choose to occupy the sites or bonds at the surface with a different probability to the bulk probability . Different surface phase transitions can then occur depending on the values of the bulk occupation probability and the surface occupation probability . [1] The simplest case is the ordinary transition, which occurs when is at the critical probability for the bulk phase transition. Here both the bulk and the surface start percolating, regardless of the value of , since there will typically be a path connecting the surface boundaries through the percolating bulk. Then there is the surface transition, where the bulk probability is below the bulk threshold, but the surface probability is at the percolation threshold for percolation in one lower dimension (i.e. the dimension of the surface). Here the surface undergoes a percolation transition while the bulk remains disconnected. If we enter this region of the phase diagram where the surface is ordered while the bulk is disordered, and then increase the bulk probability, we eventually encounter the extraordinary transition, where the bulk undergoes a percolation transition with the surface already percolating. Finally, there is the special phase transition, which is an isolated point where the phase boundaries for the ordinary, special, and extraordinary transitions meet.

In general the different surface transitions will be in distinct surface universality classes, with different critical exponents. Given an exponent, say , we label the relevant exponent at the ordinary, surface, extraordinary, and special transitions by , , , and respectively.

surface percolation thresholds

LatticezSite percolation thresholdBond percolation threshold
generic triangular3

Surface critical exponents

The probability that a surface sites connected to the infinite (percolating) cluster, for an infinite system and , is given by [2]

with where is the bulk exponent for the order parameter.

As a function of the time in an epidemic process (or the chemical distance), we have at

with , where is the bulk dynamical exponent.

Exponent2d3d4d5d6d
0.970(6), [2] 0.98(2) [3]

Scaling relations

The critical exponents the following scaling relations:

(Deng and Blöte) [4]

See also

Related Research Articles

<span class="mw-page-title-main">Riemann curvature tensor</span> Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

<span class="mw-page-title-main">Percolation theory</span> Mathematical theory on behavior of connected clusters in a random graph

In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles network theory and percolation.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distribution. There are two different parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ.
  2. With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter.

The Ising model, named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.

In statistical mechanics, a universality class is a collection of mathematical models which share a single scale invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.

<span class="mw-page-title-main">Einstein field equations</span> Field-equations in general relativity

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

In physics, a wave vector is a vector which helps describe a wave. Like any vector, it has a magnitude and direction, both of which are important. Its magnitude is either the wavenumber or angular wavenumber of the wave, and its direction is ordinarily the direction of wave propagation.

<span class="mw-page-title-main">Einstein tensor</span> Tensor used in general relativity

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely.

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems, the critical exponents depend only on:

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

Widom scaling is a hypothesis in statistical mechanics regarding the free energy of a magnetic system near its critical point which leads to the critical exponents becoming no longer independent so that they can be parameterized in terms of two values. The hypothesis can be seen to arise as a natural consequence of the block-spin renormalization procedure, when the block size is chosen to be of the same size as the correlation length.

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

Conductivity near the percolation threshold in physics, occurs in a mixture between a dielectric and a metallic component. The conductivity and the dielectric constant of this mixture show a critical behavior if the fraction of the metallic component reaches the percolation threshold.

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus, developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

In mathematics, the connective constant is a numerical quantity associated with self-avoiding walks on a lattice. It is studied in connection with the notion of universality in two-dimensional statistical physics models. While the connective constant depends on the choice of lattice so itself is not universal, it is nonetheless an important quantity that appears in conjectures for universal laws. Furthermore, the mathematical techniques used to understand the connective constant, for example in the recent rigorous proof by Duminil-Copin and Smirnov that the connective constant of the hexagonal lattice has the precise value , may provide clues to a possible approach for attacking other important open problems in the study of self-avoiding walks, notably the conjecture that self-avoiding walks converge in the scaling limit to the Schramm–Loewner evolution.

Robustness, the ability to withstand failures and perturbations, is a critical attribute of many complex systems including complex networks.

In theoretical physics, the curvature renormalization group (CRG) method is an analytical approach to determine the phase boundaries and the critical behavior of topological systems. Topological phases are phases of matter that appear in certain quantum mechanical systems at zero temperature because of a robust degeneracy in the ground-state wave function. They are called topological because they can be described by different (discrete) values of a nonlocal topological invariant. This is to contrast with non-topological phases of matter that can be described by different values of a local order parameter. States with different values of the topological invariant cannot change into each other without a phase transition. The topological invariant is constructed from a curvature function that can be calculated from the bulk Hamiltonian of the system. At the phase transition, the curvature function diverges, and the topological invariant correspondingly jumps abruptly from one value to another. The CRG method works by detecting the divergence in the curvature function, and thus determining the boundaries between different topological phases. Furthermore, from the divergence of the curvature function, it extracts scaling laws that describe the critical behavior, i.e. how different quantities behave as the topological phase transition is approached. The CRG method has been successfully applied to a variety of static, periodically driven, weakly and strongly interacting systems to classify the nature of the corresponding topological phase transitions.

References

  1. Domb, Cyril; Lebowitz, Joel (1983). Phase transitions and critical phenomena (vol 8). London: Academic Press. pp. 2–135. ISBN   0-12-220308-9.
  2. 1 2 Grassberger, Peter (1992). "Numerical studies of critical percolation in three dimensions". J. Phys. A: Math. Gen. 25 (22): 5867–5888. Bibcode:1992JPhA...25.5867G. doi:10.1088/0305-4470/25/22/015.
  3. Hansen, A; P. M. Lam; S. Roux (1981). "Surface order parameter in three-dimensional percolation". J. Phys. A: Math. Gen. 22 (13): 2635. doi:10.1088/0305-4470/22/13/056.
  4. Feng, Xiaomei; Youjin Deng; H. W. J. Blöte (2005). "Surface critical phenomena in three-dimensional percolation". Physical Review E. 71 (1 Pt 2): 016117. Bibcode:2005PhRvE..71a6117D. doi:10.1103/PhysRevE.71.016117. PMID   15697668.