Periodic table of topological insulators and topological superconductors

Last updated

The periodic table of topological insulators and topological superconductors, also called tenfold classification of topological insulators and superconductors, is an application of topology to condensed matter physics. It indicates the mathematical group for the topological invariant of the topological insulators and topological superconductors, given a dimension and discrete symmetry class. [1] The ten possible discrete symmetry families are classified according to three main symmetries: particle-hole symmetry, time-reversal symmetry and chiral symmetry. The table was developed between 2008–2010 [1] by the collaboration of Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki and Andreas W. W. Ludwig; [2] [3] and independently by Alexei Kitaev. [4]

Contents

Overview

Periodic table of topological insulators and superconductors (1D up to 3D) [1]
Symmetry classOperationDimension
123
AXXX
AIIIXX1
AI1XX
BDI111
DX1X
DIII-111
AII-1XX
CII-1-11
CX-1X
CI1-11

These table applies to topological insulators and topological superconductors with an energy gap, when particle-particle interactions are excluded. The table is no longer valid if interactions are included. [1]

The topological insulators and superconductors are classified here in ten symmetry classes (A,AII,AI,BDI,D,DIII,AII,CII,C,CI) named after Altland–Zirnbauer classification, defined here by the properties of the system with respect to three operators: the time-reversal operator , charge conjugation and chiral symmetry . The symmetry classes are ordered according to the Bott clock (see below) so that the same values repeat in the diagonals. [5]

An X in the table of "Symmetries" indicates that the Hamiltonian of the symmetry is broken with respect to the given operator. A value of ±1 indicates the value of the operator squared for that system. [5]

The dimension indicates the dimensionality of the systes: 1D (chain), 2D (plane) annd 3D lattices. It can be extended up to any number of positive integer dimension. Below, there can be four possible group values that are tabulated for a given class and dimension: [5]

Physical examples

The non-chiral Su–Schrieffer–Heeger model (), can be associated with symmetry class BDI with an integer topological invariant due to gauge invariance. [6] [7] The problem is similar to the integer quantum Hall effect and the quantum anomalous Hall effect (both in ) which are A class, with integer Chern number. [8]

Contrarily, the Kitaev chain (), is an example of symmetry class D, with a binary topological invariant. [7] Similarly, the superconductors () are also in class D, but with a topological invariant. [7]

The quantum spin Hall effect () described by Kane–Mele model is an example of AII class, with a topological invariant. [9]

Construction

Discrete symmetry classes

There are ten discrete symmetry classes of topological insulators and superconductors, corresponding to the ten Altland–Zirnbauer classes of random matrices. They are defined by three symmetries of the Hamiltonian , (where , and , are the annihilation and creation operators of mode , in some arbitrary spatial basis) : time-reversal symmetry, particle-hole (or charge conjugation) symmetry, and chiral (or sublattice) symmetry.

In the Bloch Hamiltonian formalism for crystal structures, where the Hamiltonian acts on modes of crystal momentum , the chiral symmetry, TRS, and PHS conditions become

It is evident that if two of these three symmetries are present, then the third is also present, due to the relation .

The aforementioned discrete symmetries label 10 distinct discrete symmetry classes, which coincide with the Altland–Zirnbauer classes of random matrices.

Symmetry classTime reversal symmetryParticle hole symmetryChiral symmetry
ANoNoNo
AIIINoNoYes
AIYes, NoNo
BDIYes, Yes, Yes
DNoYes, No
DIIIYes, Yes, Yes
AIIYes, NoNo
CIIYes, Yes, Yes
CNoYes, No
CIYes, Yes, Yes

Equivalence classes of Hamiltonians

A bulk Hamiltonian in a particular symmetry group is restricted to be a Hermitian matrix with no zero-energy eigenvalues (i.e. so that the spectrum is "gapped" and the system is a bulk insulator) satisfying the symmetry constraints of the group. In the case of dimensions, this Hamiltonian is a continuous function of the parameters in the Bloch momentum vector in the Brillouin zone; then the symmetry constraints must hold for all .

Given two Hamiltonians and , it may be possible to continuously deform into while maintaining the symmetry constraint and gap (that is, there exists continuous function such that for all the Hamiltonian has no zero eigenvalue and symmetry condition is maintained, and and ). Then we say that and are equivalent.

However, it may also turn out that there is no such continuous deformation. in this case, physically if two materials with bulk Hamiltonians and , respectively, neighbor each other with an edge between them, when one continuously moves across the edge one must encounter a zero eigenvalue (as there is no continuous transformation that avoids this). This may manifest as a gapless zero energy edge mode or an electric current that only flows along the edge.

An interesting question is to ask, given a symmetry class and a dimension of the Brillouin zone, what are all the equivalence classes of Hamiltonians. Each equivalence class can be labeled by a topological invariant; two Hamiltonians whose topological invariant are different cannot be deformed into each other and belong to different equivalence classes.

Classifying spaces of Hamiltonians

For each of the symmetry classes, the question can be simplified by deforming the Hamiltonian into a "projective" Hamiltonian, and considering the symmetric space in which such Hamiltonians live. These classifying spaces are shown for each symmetry class: [4]

Symmetry classClassifying spaceof Classifying space
A
AIII
AI
BDI
D
DIII
AII
CII
C
CI

For example, a (real symmetric) Hamiltonian in symmetry class AI can have its positive eigenvalues deformed to +1 and its negative eigenvalues deformed to -1; the resulting such matrices are described by the union of real Grassmannians

Classification of invariants

The strong topological invariants of a many-band system in dimensions can be labeled by the elements of the -th homotopy group of the symmetric space. These groups are displayed in this table, called the periodic table of topological insulators:

Symmetry class
A
AIII
AI
BDI
D
DIII
AII
CII
C
CI

There may also exist weak topological invariants (associated to the fact that the suspension of the Brillouin zone is in fact equivalent to a sphere wedged with lower-dimensional spheres), which are not included in this table. Furthermore, the table assumes the limit of an infinite number of bands, i.e. involves Hamiltonians for .

The table also is periodic in the sense that the group of invariants in dimensions is the same as the group of invariants in dimensions. In the case of no ant-iunitary symmetries, the invariant groups are periodic in dimension by 2.

For nontrivial symmetry classes, the actual invariant can be defined by one of the following integrals over all or part of the Brillouin zone: the Chern number, the Wess-Zumino winding number, the Chern–Simons invariant, the Fu–Kane invariant.

Dimensional reduction and Bott clock

The periodic table also displays a peculiar property: the invariant groups in dimensions are identical to those in dimensions but in a different symmetry class. Among the complex symmetry classes, the invariant group for A in dimensions is the same as that for AIII in dimensions, and vice versa. One can also imagine arranging each of the eight real symmetry classes on the Cartesian plane such that the coordinate is if time reversal symmetry is present and if it is absent, and the coordinate is if particle hole symmetry is present and if it is absent. Then the invariant group in dimensions for a certain real symmetry class is the same as the invariant group in dimensions for the symmetry class directly one space clockwise. This phenomenon was termed the Bott clock by Alexei Kitaev, in reference to the Bott periodicity theorem. [1] [10]

Eightfold Bott clock (bold classes are chiral)
PHS
TRS
-1X1
-1CIIAIIDII
XCD
1CIAIBDI

The Bott clock can be understood by considering the problem of Clifford algebra extensions. [1] Near an interface between two inequivalent bulk materials, the Hamiltonian approaches a gap closing. To lowest order expansion in momentum slightly away from the gap closing, the Hamiltonian takes the form of a Dirac Hamiltonian . Here, are a representation of the Clifford Algebra , while is an added "mass term" that and anticommutes with the rest of the Hamiltonian and vanishes at the interface (thus giving the interface a gapless edge mode at ). The term for the Hamiltonian on one side of the interface cannot be continuously deformed into the term for the Hamiltonian on the other side of the interface. Thus (letting be an arbitrary positive scalar) the problem of classifying topological invariants reduces to the problem of classifying all possible inequivalent choices of to extend the Clifford algebra to one higher dimension, while maintaining the symmetry constraints.

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.

<span class="mw-page-title-main">Loop quantum gravity</span> Theory of quantum gravity, merging quantum mechanics and general relativity

Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein's geometric formulation rather than the treatment of gravity as a mysterious mechanism (force). As a theory, LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale on the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.

<span class="mw-page-title-main">Linking number</span> Numerical invariant that describes the linking of two closed curves in three-dimensional space

In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves.

In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Canonical quantum gravity</span> A formulation of general relativity

In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity. It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity.

The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

Symmetry-protected topological (SPT) order is a kind of order in zero-temperature quantum-mechanical states of matter that have a symmetry and a finite energy gap.

In the ADM formulation of general relativity one splits spacetime into spatial slices and time, the basic variables are taken to be the induced metric, , on the spatial slice, and its conjugate momentum variable related to the extrinsic curvature, ,. These are the metric canonical coordinates.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

In mathematical physics, Clebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory.

Quantum optimization algorithms are quantum algorithms that are used to solve optimization problems. Mathematical optimization deals with finding the best solution to a problem from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. Quantum computing may allow problems which are not practically feasible on classical computers to be solved, or suggest a considerable speed up with respect to the best known classical algorithm.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are graphene and other Dirac semimetals, topological insulators, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the gamma matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

In physics, magnetic topological insulators are three dimensional magnetic materials with a non-trivial topological index protected by a symmetry other than time-reversal. This type of material conducts electricity on its outer surface, but its volume behaves like an insulator.

In theoretical physics, the curvature renormalization group (CRG) method is an analytical approach to determine the phase boundaries and the critical behavior of topological systems. Topological phases are phases of matter that appear in certain quantum mechanical systems at zero temperature because of a robust degeneracy in the ground-state wave function. They are called topological because they can be described by different (discrete) values of a nonlocal topological invariant. This is to contrast with non-topological phases of matter that can be described by different values of a local order parameter. States with different values of the topological invariant cannot change into each other without a phase transition. The topological invariant is constructed from a curvature function that can be calculated from the bulk Hamiltonian of the system. At the phase transition, the curvature function diverges, and the topological invariant correspondingly jumps abruptly from one value to another. The CRG method works by detecting the divergence in the curvature function, and thus determining the boundaries between different topological phases. Furthermore, from the divergence of the curvature function, it extracts scaling laws that describe the critical behavior, i.e. how different quantities behave as the topological phase transition is approached. The CRG method has been successfully applied to a variety of static, periodically driven, weakly and strongly interacting systems to classify the nature of the corresponding topological phase transitions.

In condensed matter physics, the Kitaev chain is a simplified model for a topological superconductor. It models a one dimensional lattice featuring Majorana bound states. The Kitaev chain have been used as a toy model of semiconductor nanowires for the development of topological quantum computers. The model was first proposed by Alexei Kitaev in 2000.

References

  1. 1 2 3 4 5 6 Chiu, C.; J. Teo; A. Schnyder; S. Ryu (2016). "Classification of topological quantum matter with symmetries". Rev. Mod. Phys. 88 (35005): 035005. arXiv: 1505.03535 . Bibcode:2016RvMP...88c5005C. doi:10.1103/RevModPhys.88.035005. S2CID   119294876.
  2. Schnyder, Andreas P.; Ryu, Shinsei; Furusaki, Akira; Ludwig, Andreas W. W. (2008-11-26). "Classification of topological insulators and superconductors in three spatial dimensions". Physical Review B. 78 (19): 195125. arXiv: 0803.2786 . Bibcode:2008PhRvB..78s5125S. doi:10.1103/PhysRevB.78.195125.
  3. Ryu, Shinsei; Schnyder, Andreas P; Furusaki, Akira; Ludwig, Andreas W W (2010-06-17). "Topological insulators and superconductors: tenfold way and dimensional hierarchy". New Journal of Physics. 12 (6): 065010. arXiv: 0912.2157 . Bibcode:2010NJPh...12f5010R. doi:10.1088/1367-2630/12/6/065010. ISSN   1367-2630.
  4. 1 2 Kitaev, Alexei (2009). "Periodic table for topological insulators and superconductors". AIP Conference Proceedings. AIP. pp. 22–30. arXiv: 0901.2686 . doi:10.1063/1.3149495.
  5. 1 2 3 Topology course team (2021). "10 symmetry classes and the periodic table of topological insulators". Online course on topology in condensed matter - TU Delft. Retrieved 2024-09-13.
  6. Sachdev, Subir (2023-04-13). Quantum Phases of Matter. Cambridge University Press. ISBN   978-1-009-21269-4.
  7. 1 2 3 Huber, Sebastian (2013). "5 Topological insulators and superconductors". Topological quantum numbers in condensed matter systems. ETH Zurich.
  8. Altland, Alexander; Simons, Ben (2023-09-14). Condensed Matter Field Theory. Cambridge University Press. ISBN   978-1-108-49460-1.
  9. Stanescu, Tudor D. (2024-07-02). Introduction to Topological Quantum Matter & Quantum Computation. CRC Press. ISBN   978-1-040-04191-8.
  10. Ryu, Shinsei. "General approach to topological classification". Topology in Condensed Matter. Retrieved 2018-04-30.