In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam [1] as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 [2] emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.
In quantum mechanics, the Berry phase arises in a cyclic adiabatic evolution. The quantum adiabatic theorem applies to a system whose Hamiltonian depends on a (vector) parameter that varies with time . If the 'th eigenvalue remains non-degenerate everywhere along the path and the variation with time t is sufficiently slow, then a system initially in the normalized eigenstate will remain in an instantaneous eigenstate of the Hamiltonian , up to a phase, throughout the process. Regarding the phase, the state at time t can be written as [3]
where the second exponential term is the "dynamic phase factor." The first exponential term is the geometric term, with being the Berry phase. From the requirement that the state satisfies the time-dependent Schrödinger equation, it can be shown that
indicating that the Berry phase only depends on the path in the parameter space, not on the rate at which the path is traversed.
In the case of a cyclic evolution around a closed path such that , the closed-path Berry phase is
An example of physical systems where an electron moves along a closed path is cyclotron motion (details are given in the page of Berry phase). Berry phase must be considered to obtain the correct quantization condition.
A gauge transformation can be performed
to a new set of states that differ from the original ones only by an -dependent phase factor. This modifies the open-path Berry phase to be . For a closed path, continuity requires that ( an integer), and it follows that is invariant, modulo , under an arbitrary gauge transformation.
The closed-path Berry phase defined above can be expressed as
where
is a vector-valued function known as the Berry connection (or Berry potential). The Berry connection is gauge-dependent, transforming as . Hence the local Berry connection can never be physically observable. However, its integral along a closed path, the Berry phase , is gauge-invariant up to an integer multiple of . Thus, is absolutely gauge-invariant, and may be related to physical observables.
The Berry curvature is an anti-symmetric second-rank tensor derived from the Berry connection via
In a three-dimensional parameter space the Berry curvature can be written in the pseudovector form
The tensor and pseudovector forms of the Berry curvature are related to each other through the Levi-Civita antisymmetric tensor as . In contrast to the Berry connection, which is physical only after integrating around a closed path, the Berry curvature is a gauge-invariant local manifestation of the geometric properties of the wavefunctions in the parameter space, and has proven to be an essential physical ingredient for understanding a variety of electronic properties. [4] [5]
For a closed path that forms the boundary of a surface , the closed-path Berry phase can be rewritten using Stokes' theorem as
If the surface is a closed manifold, the boundary term vanishes, but the indeterminacy of the boundary term modulo manifests itself in the Chern theorem, which states that the integral of the Berry curvature over a closed manifold is quantized in units of . This number is the so-called Chern number, and is essential for understanding various quantization effects.
Finally, by using for , the Berry curvature can also be written as a summation over all the other eigenstates in the form
Note that the curvature of the nth energy level is contributed by all the other energy levels. That is, the Berry curvature can be viewed as the result of the residual interaction of those projected-out eigenstates. [5] This gives the local conservation law for the Berry curvature, if we sum over all possible energy levels for each value of This equation also offers the advantage that no differentiation on the eigenstates is involved, and thus it can be computed under any gauge choice.
The Hamiltonian of a spin-1/2 particle in a magnetic field can be written as [3]
where denote the Pauli matrices, is the magnetic moment, and B is the magnetic field. In three dimensions, the eigenstates have energies and their eigenvectors are
Now consider the state. Its Berry connection can be computed as , and the Berry curvature is If we choose a new gauge by multiplying by (or any other phase , ), the Berry connections are and , while the Berry curvature remains the same. This is consistent with the conclusion that the Berry connection is gauge-dependent while the Berry curvature is not.
The Berry curvature per solid angle is given by . In this case, the Berry phase corresponding to any given path on the unit sphere in magnetic-field space is just half the solid angle subtended by the path. The integral of the Berry curvature over the whole sphere is therefore exactly , so that the Chern number is unity, consistent with the Chern theorem.
The Berry phase plays an important role in modern investigations of electronic properties in crystalline solids [5] and in the theory of the quantum Hall effect. [6] The periodicity of the crystalline potential allows the application of the Bloch theorem, which states that the Hamiltonian eigenstates take the form
where is a band index, is a wavevector in the reciprocal-space (Brillouin zone), and is a periodic function of . Due to translational symmetry, the momentum operator could be replaced with by the Peierls substitution and the wavevector plays the role of the parameter . [5] Thus, one can define Berry phases, connections, and curvatures in the reciprocal space. For example, in an N-band system, the Berry connection of the nth band in reciprocal space is
In the system, the Berry curvature of the nth band is given by all the other N − 1 bands for each value of In a 2D crystal, the Berry curvature only has the component out of the plane and behaves as a pseudoscalar. It is because there only exists in-plane translational symmetry when translational symmetry is broken along z direction for a 2D crystal. Because the Bloch theorem also implies that the reciprocal space itself is closed, with the Brillouin zone having the topology of a 3-torus in three dimensions, the requirements of integrating over a closed loop or manifold can easily be satisfied. In this way, such properties as the electric polarization, orbital magnetization, anomalous Hall conductivity, and orbital magnetoelectric coupling can be expressed in terms of Berry phases, connections, and curvatures. [5] [7] [8]
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.
In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.
In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.
In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.
In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.
In physics, the Maxwell–Jüttner distribution, sometimes called Jüttner–Synge distribution, is the distribution of speeds of particles in a hypothetical gas of relativistic particles. Similar to the Maxwell–Boltzmann distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other. The distinction from Maxwell–Boltzmann's case is that effects of special relativity are taken into account. In the limit of low temperatures much less than , this distribution becomes identical to the Maxwell–Boltzmann distribution.
Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.
In mathematical physics, Clebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory.
In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.