Perles configuration

Last updated
The Perles configuration Perles configuration.svg
The Perles configuration

In geometry, the Perles configuration is a system of nine points and nine lines in the Euclidean plane for which every combinatorially equivalent realization has at least one irrational number as one of its coordinates. It can be constructed from the diagonals and symmetry lines of a regular pentagon, omitting one of the symmetry lines. In turn, it can be used to construct higher-dimensional convex polytopes that cannot be given rational coordinates, having the fewest vertices of any known example. All of the realizations of the Perles configuration in the projective plane are equivalent to each other under projective transformations.

Contents

The Perles configuration was introduced by Micha Perles in the 1960s. [1] It is not the first known example of an irrational configuration of points and lines. Mac Lane (1936) describes an 11-point example, obtained by applying Von Staudt's algebra of throws to construct a configuration corresponding to the square root of two. [2]

There is a long history of study of regular projective configurations, finite systems of points and lines in which each point touches equally many lines and each line touches equally many points. However, despite being named similarly to these configurations, the Perles configuration is not regular: most of its points touch three lines and most of its lines touch three points, but there is one line of four points and one point on four lines. In this respect it differs from the Pappus configuration, which also has nine points and nine lines, but with three points on every line and three lines through every point. [3]

Construction from a regular pentagon

One way of constructing the Perles configuration is to start with a regular pentagon and its five diagonals, which form the sides of a smaller regular pentagon within the initial one. The nine points of the configuration consist of four out of the five vertices of each pentagon and the shared center of the two pentagons; the two missing pentagon vertices are chosen to be collinear with the center. The nine lines of the configuration consist of the five lines that are diagonals of the outer pentagon and sides of the inner pentagon, and the four lines that pass through the center and through corresponding pairs of vertices from the two pentagons. [4]

Projective invariance and irrationality

A realization of the Perles configuration consists of any nine points and nine lines with the same intersection pattern. Every realization of this configuration in the Euclidean plane or, more generally, in the real projective plane is equivalent, under a projective transformation, to a realization constructed in this way from a regular pentagon. Because the cross-ratio, a number defined from any four collinear points, does not change under projective transformations, every realization has four points having the same cross-ratio as the cross-ratio of the four collinear points in the realization derived from the regular pentagon. But, these four points have as their cross-ratio, where is the golden ratio, an irrational number. Every four collinear points with rational coordinates have a rational cross ratio, so the Perles configuration cannot be realized by rational points. Branko Grünbaum has conjectured that every configuration that can be realized by irrational but not rational numbers has at least nine points; if so, the Perles configuration would be the smallest possible irrational configuration of points and lines. [5]

Application in polyhedral combinatorics

Perles used his configuration to construct an eight-dimensional convex polytope with twelve vertices that can similarly be realized with real coordinates but not with rational coordinates. The points of the configuration, three of them doubled and with signs associated with each point, form the Gale diagram of the Perles polytope. Ernst Steinitz's proof of Steinitz's theorem can be used to show that every three-dimensional polytope can be realized with rational coordinates, but it is now known that there exist irrational polytopes in four dimensions. However, the Perles polytope has the fewest vertices of any known irrational polytope. [6]

Notes

Related Research Articles

Regular icosahedron One of the five Platonic solids

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

Polyhedron 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

In elementary geometry, a polytope is a geometric object with flat sides (faces). It is a generalization in any number of dimensions of the three-dimensional polyhedron. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope.

24-cell Regular object in four dimensional geometry

In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

Star polygon Regular non-convex polygon

In geometry, a star polygon is a type of non-convex polygon, and most commonly, a type of decagon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, however certain notable ones can arise through truncation operations on regular simple and star polygons.

Fano plane Geometry with 7 points and 7 lines

In finite geometry, the Fano plane is the finite projective plane of order 2. It is the finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. The standard notation for this plane, as a member of a family of projective spaces, is PG(2, 2) where PG stands for "projective geometry", the first parameter is the geometric dimension and the second parameter is the order.

600-cell Four-dimensional analog of the icosahedron

In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,5}. It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells.

5-cell Four-dimensional analogue of the tetrahedron

In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is the 4-simplex (Coxeter's polytope), the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The 5-cell is a 4-dimensional pyramid with a tetrahedral base and four tetrahedral sides.

Sylvester–Gallai theorem Existence of a line through two points

The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.

Convex polytope Convex hull of a finite set of points in a Euclidean space

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

Happy ending problem

In mathematics, the "happy ending problem" is the following statement:

Regular dodecahedron Platonic solid

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.

In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.

Möbius–Kantor configuration

In geometry, the Möbius–Kantor configuration is a configuration consisting of eight points and eight lines, with three points on each line and three lines through each point. It is not possible to draw points and lines having this pattern of incidences in the Euclidean plane, but it is possible in the complex projective plane.

Associahedron Convex polytope of parenthesizations

In mathematics, an associahedronKn is an (n – 2)-dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of n letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with n + 1 sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari.

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

Pentagon Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

In geometry and polyhedral combinatorics, a k-neighborly polytope is a convex polytope in which every set of k or fewer vertices forms a face. For instance, a 2-neighborly polytope is a polytope in which every pair of vertices is connected by an edge, forming a complete graph. 2-neighborly polytopes with more than four vertices may exist only in spaces of four or more dimensions, and in general a k-neighborly polytope requires a dimension of 2k or more. A d-simplex is d-neighborly. A polytope is said to be neighborly, without specifying k, if it is k-neighborly for . If we exclude simplices, this is the maximum possible k: in fact, every polytope that is k-neighborly for some is a simplex.

Micha Asher Perles is an Israeli mathematician working in geometry, a professor emeritus at the Hebrew University. He earned his Ph.D. in 1964 from the Hebrew University, under the supervision of Branko Grünbaum. His contributions include:

In polyhedral combinatorics, the Gale transform turns the vertices of any convex polytopes into a set of vectors or points in a space of a different dimension, the Gale diagram of the polytope. It can be used to describe high-dimensional polytopes with few vertices, by transforming them into sets of points in a space of a much lower dimension. The process can also be reversed, to construct polytopes with desired properties from their Gale diagrams. The Gale transform and Gale diagram are named after David Gale, who introduced these methods in a 1956 paper on neighborly polytopes.

References