Pervaporation

Last updated

Pervaporation (or pervaporative separation) is a processing method for the separation of mixtures of liquids by partial vaporization through a non-porous or porous membrane. [1]

Contents

Theory

The term pervaporation is a portmanteau of the two steps of the process: (a) permeation through the membrane by the permeate, then (b) its evaporation into the vapor phase. This process is used by a number of industries for several different processes, including purification and analysis, due to its simplicity and in-line nature.

The membrane acts as a selective barrier between the two phases: the liquid-phase feed and the vapor-phase permeate. It allows the desired components of the liquid feed to transfer through it by vaporization. Separation of components is based on a difference in transport rate of individual components through the membrane.

Typically, the upstream side of the membrane is at ambient pressure and the downstream side is under vacuum to allow the evaporation of the selective component after permeation through the membrane. Driving force for the separation is the difference in the partial pressures of the components on the two sides and not the volatility difference of the components in the feed.

The driving force for transport of different components is provided by a chemical potential difference between the liquid feed/retentate and vapor permeate at each side of the membrane. The retentate is the remainder of the feed leaving the membrane feed chamber, which is not permeated through the membrane. The chemical potential can be expressed in terms of fugacity, given by Raoult's law for a liquid and by Dalton's law for (an ideal) gas. During operation, due to removal of the vapor-phase permeate, the actual fugacity of the vapor is lower than anticipated on basis of the collected (condensed) permeate.

Separation of components (e.g. water and ethanol) is based on a difference in transport rate of individual components through the membrane. This transport mechanism can be described using the solution-diffusion model, based on the rate/degree of dissolution of a component into the membrane and its velocity of transport (expressed in terms of diffusivity) through the membrane, which will be different for each component and membrane type leading to separation.

Applications

Pervaporation is effective for dilute solutions containing trace or minor amounts of the component to be removed. Based on this, hydrophilic membranes are used for dehydration of alcohols containing small amounts of water and hydrophobic membranes are used for removal/recovery of trace amounts of organics from aqueous solutions.

Pervaporation is an efficient energy conserving alternative to processes such as distillation and evaporation. It allows the exchange of two phases without direct contact. [2]

Examples include solvent dehydration: dehydrating the ethanol/water and isopropanol/water azeotropes, continuous ethanol removal from yeast fermentors, continuous water removal from condensation reactions such as esterifications to enhance conversion and rate of the reaction, membrane introduction mass spectrometry, removing organic solvents from industrial waste waters, combination of distillation and pervaporation/vapour permeation, and concentration of hydrophobic flavour compounds in aqueous solutions (using hydrophobic membranes).

Recently, a number of organophilic pervaporation membranes have been introduced to the market. Organophilic pervaporation membranes can be used for the separation of organic-organic mixtures, e.g.: reduction of the aromatics content in refinery streams, breaking of azeotropes, purification of extraction media, purification of product stream after extraction, and purification of organic solvents.

Materials

Hydrophobic membranes are often polydimethylsiloxane based where the actual separation mechanism is based on the solution-diffusion model described above.

Hydrophilic membranes are more widely available. The commercially most successful pervaporation membrane system to date is based on polyvinyl alcohol. More recently also membranes based on polyimide have become available. To overcome the intrinsic disadvantages of polymeric membrane systems ceramic membranes have been developed over the last decade. These ceramic membranes consist of nanoporous layers on top of a macroporous support. The pores must be large enough to let water molecules pass through and retain any other solvents that have a larger molecular size such as ethanol. As a result, a molecular sieve with a pore size of about 4 Å is obtained. The most widely available member of this class of membranes is that based on zeolite A.

Alternatively to these crystalline materials, the porous structure of amorphous silica layers can be tailored towards molecular selectivity. These membranes are fabricated by sol-gel chemical processes. Research into novel hydrophilic ceramic membranes has been focused on titania or zirconia. Very recently a break-through in hydrothermal stability has been achieved through the development of an organic-inorganic hybrid material.[ citation needed ]

See also

Related Research Articles

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation, usually inside an apparatus known as a still. Dry distillation is the heating of solid materials to produce gaseous products ; this may involve chemical changes such as destructive distillation or cracking. Distillation may result in essentially complete separation, or it may be a partial separation that increases the concentration of selected components; in either case, the process exploits differences in the relative volatility of the mixture's components. In industrial applications, distillation is a unit operation of practically universal importance, but is a physical separation process, not a chemical reaction. An installation used for distillation, especially of distilled beverages, is a distillery. Distillation includes the following applications:

<span class="mw-page-title-main">Ethanol</span> Organic compound (CH₃CH₂OH)

Ethanol is an organic compound with the chemical formula CH3CH2OH. It is an alcohol, with its formula also written as C2H5OH, C2H6O or EtOH, where Et stands for ethyl. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like odor and pungent taste. It is a psychoactive recreational drug, and the active ingredient in alcoholic drinks.

Raoult's law ( law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.

<span class="mw-page-title-main">Azeotrope</span> Mixture of two or more liquids whose proportions do not change when the mixture is distilled

An azeotrope or a constant heating point mixture is a mixture of two or more components in fluidic states whose proportions cannot be altered or changed by simple distillation. This happens because when an azeotrope is boiled, the vapour has the same proportions of constituents as the unboiled mixture. Azeotropic mixture behavior is important for fluid separation processes.

<span class="mw-page-title-main">Azeotropic distillation</span> Any of a range of techniques used to break an azeotrope in distillation

In chemistry, azeotropic distillation is any of a range of techniques used to break an azeotrope in distillation. In chemical engineering, azeotropic distillation usually refers to the specific technique of adding another component to generate a new, lower-boiling azeotrope that is heterogeneous, such as the example below with the addition of benzene to water and ethanol.

An artificial membrane, or synthetic membrane, is a synthetically created membrane which is usually intended for separation purposes in laboratory or in industry. Synthetic membranes have been successfully used for small and large-scale industrial processes since the middle of the twentieth century. A wide variety of synthetic membranes is known. They can be produced from organic materials such as polymers and liquids, as well as inorganic materials. Most commercially utilized synthetic membranes in industry are made of polymeric structures. They can be classified based on their surface chemistry, bulk structure, morphology, and production method. The chemical and physical properties of synthetic membranes and separated particles as well as separation driving force define a particular membrane separation process. The most commonly used driving forces of a membrane process in industry are pressure and concentration gradient. The respective membrane process is therefore known as filtration. Synthetic membranes utilized in a separation process can be of different geometry and flow configurations. They can also be categorized based on their application and separation regime. The best known synthetic membrane separation processes include water purification, reverse osmosis, dehydrogenation of natural gas, removal of cell particles by microfiltration and ultrafiltration, removal of microorganisms from dairy products, and dialysis.

Reactive distillation is a process where the chemical reactor is also the still. Separation of the product from the reaction mixture does not need a separate distillation step which saves energy and materials. This technique can be useful for equilibrium-limited reactions such as esterification and ester hydrolysis reactions. Conversion can be increased beyond what is expected by the equilibrium due to the continuous removal of reaction products from the reactive zone. This approach can also reduce capital and investment costs.

<span class="mw-page-title-main">Cross-flow filtration</span>

In chemical engineering, biochemical engineering and protein purification, crossflow filtration is a type of filtration. Crossflow filtration is different from dead-end filtration in which the feed is passed through a membrane or bed, the solids being trapped in the filter and the filtrate being released at the other end. Cross-flow filtration gets its name because the majority of the feed flow travels tangentially across the surface of the filter, rather than into the filter. The principal advantage of this is that the filter cake is substantially washed away during the filtration process, increasing the length of time that a filter unit can be operational. It can be a continuous process, unlike batch-wise dead-end filtration.

In thermodynamics and chemical engineering, the vapor–liquid equilibrium (VLE) describes the distribution of a chemical species between the vapor phase and a liquid phase.

Nanofiltration is a membrane filtration process that uses nanometer sized pores through which particles smaller than about 1–10 nanometers pass through the membrane. Nanofiltration membranes have pore sizes of about 1–10 nanometers, smaller than those used in microfiltration and ultrafiltration, but a slightly bigger than those in reverse osmosis. Membranes used are predominantly polymer thin films. It is used to soften, disinfect, and remove impurities from water, and to purify or separate chemicals such as pharmaceuticals.

Nanotube membranes are either a single, open-ended nanotube(CNT) or a film composed of an array of nanotubes that are oriented perpendicularly to the surface of an impermeable film matrix like the cells of a honeycomb. 'Impermeable' is essential here to distinguish nanotube membrane with traditional, well known porous membranes. Fluids and gas molecules may pass through the membrane en masse but only through the nanotubes. For instance, water molecules form ordered hydrogen bonds that act like chains as they pass through the CNTs. This results in an almost frictionless or atomically smooth interface between the nanotubes and water which relate to a "slip length" of the hydrophobic interface. Properties like the slip length that describe the non-continuum behavior of the water within the pore walls are disregarded in simple hydrodynamic systems and absent from the Hagen–Poiseuille equation. Molecular dynamic simulations better characterize the flow of water molecules through the carbon nanotubes with a varied form of the Hagen–Poiseuille equation that takes into account slip length.

<span class="mw-page-title-main">Ethanol-induced non-lamellar phases in phospholipids</span>

The presence of ethanol can lead to the formations of non-lamellar phases also known as non-bilayer phases. Ethanol has been recognized as being an excellent solvent in an aqueous solution for inducing non-lamellar phases in phospholipids. The formation of non-lamellar phases in phospholipids is not completely understood, but it is significant that this amphiphilic molecule is capable of doing so. The formation of non-lamellar phases is significant in biomedical studies which include drug delivery, the transport of polar and non-polar ions using solvents capable of penetrating the biomembrane, increasing the elasticity of the biomembrane when it is being disrupted by unwanted substances and functioning as a channel or transporter of biomaterial.

<span class="mw-page-title-main">Hydrophile</span> Molecular entity that is attracted to water

A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.

Membrane technology encompasses the scientific processes used in the construction and application of membranes. Membranes are used to facilitate the transport or rejection of substances between mediums, and the mechanical separation of gas and liquid streams. In the simplest case, filtration is achieved when the pores of the membrane are smaller than the diameter of the undesired substance, such as a harmful microorganism. Membrane technology is commonly used in industries such as water treatment, chemical and metal processing, pharmaceuticals, biotechnology, the food industry, as well as the removal of environmental pollutants.

Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change. A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase to pass through the membrane's pores. The driving force of the process is a partial vapour pressure difference commonly triggered by a temperature difference.

Solvent impregnated resins (SIRs) are commercially available (macro)porous resins impregnated with a solvent/an extractant. In this approach, a liquid extractant is contained within the pores of (adsorption) particles. Usually, the extractant is an organic liquid. Its purpose is to extract one or more dissolved components from a surrounding aqueous environment. The basic principle combines adsorption, chromatography and liquid-liquid extraction.

Perstraction is a membrane extraction process, where two liquid phases are contacted across a membrane. The desired species in the feed (solute), selectively crosses the membrane into the extracting solution. Perstraction was originally developed to overcome the downsides of liquid–liquid extraction, for example extractant toxicity and emulsion formation. Perstraction has been applied to many fields including fermentation, waste water treatment and alcohol-free beverage production.

Industrial separation processes are technical procedures which are used in industry to separate a product from impurities or other products. The original mixture may either be a natural resource or the product of a chemical reaction.

References

  1. Strathmann, H. (2001). "Membrane separation processes: Current relevance and future opportunities". AIChE Journal. 47 (5): 1077–1087. doi:10.1002/aic.690470514. ISSN   0001-1541.
  2. Sae-Khow, Ornthida; Mitra, Somenath (December 2009). "Pervaporation in chemical analysis". Journal of Chromatography A. 1217 (16): 2736–2746. doi:10.1016/j.chroma.2009.12.043. PMID   20060529.

Further reading