Pfund telescope

Last updated

The Pfund telescope, originated by A.H. Pfund, provides an alternative method for achieving a fixed telescope focal point in space regardless of where the telescope line of sight is pointed.

Contents

Pfund's configuration uses a two-axis flat feed mirror that reflects starlight into a fixed paraboloidal mirror, usually with a horizontal optical axis.

The paraboloid focuses through a central hole in the feed flat to a convenient location some distance behind the flat. No spider vanes or Newtonian secondary fold mirrors are required in this configuration. This eliminates vane diffraction and blockage, as well as secondary mirror scattering and absorption, thus improving image brightness and contrast.

Design considerations

The feed flat is mounted on a two-axis azimuth/elevation mount. The azimuth and elevation drive servos must be continuously controlled as objects move across the sky, using vector addition to calculate the mirror motion in real time.

The surface normal of the feed flat mirror is the 3D bisector of vectors V1 and V2, normalized to unity length. If are the instantaneous unit vector components of the mirror's surface normal, then the mirror elevation angle is , and the mirror azimuth angle is .

The field of a Pfund telescope rotates at a nonuniform rate during tracking, precluding it from long-exposure astrophotography, unless a derotation control matrix and optics are used to compensate field rotation.

The hole in the front face of a Pfund tracking flat should only be large enough to pass the desired field of view with minimum vignetting (blocking of part of the light from the paraboloid) to minimize central obstruction. The hole through the flat must be conically shaped, opening outward toward the back of the flat with at least a 45° cone, to prevent vignetting of the image by the back of the steering flat at high mirror tilt angles. [a]

The front reflective face of the Pfund flat must be polished extremely flat, smooth and zone-free. The flat should ideally be flat to within about 25  nanometers peak-to-valley error. [b] The front face should lie precisely in the plane of the elevation rotation axis to minimize the required flat mirror aperture. This creates the need for counterweights extending forward from the mirror cell to balance the load on the elevation servo drive.

The diameter of the Pfund flat is generally larger than the focusing paraboloid; its size is a design trade-off between fully illuminated field of view coverage and flat cost and weight. If the Pfund is intended to provide fully illuminated field coverage at a 90° flat angle, then the minimum flat diameter must be at least times the paraboloid diameter.

The aperture stop is the rim of the focusing paraboloid, thus the feed flat has to be slightly larger than the on-axis diameter required to maximize illumination over the desired field.

The McDonald Observatory Supernova Search Telescope used the Pfund configuration, and its feed flat diameter was 24, while the focusing mirror was an 18 f/4.5 paraboloid.

Installations

U.C. Berkeley: Infrared Spatial Interferometer

Examples of Pfund telescopes are the Infrared Spatial Interferometer Array at the University of California at Berkeley. In addition to the array's website, [1] the instrument is described by Townes (1999), [2] and Manly (1999). [3]

McDonald Observatory: Supernova Search Telescope

The George B. Wren Supernova Search Telescope at McDonald Observatory and the new Wren-Marcario Wheelchair Access Telescope at the McDonald Observatory Visitor Center (to be operational early 2007) are both based on the Pfund configuration. [c]

The 24 steering flat and viewing port assembly rotate in azimuth to either mirror. Each half-hemisphere has its own fixed image location. The Wheelchair Access Telescope is fully compliant with the Americans with Disabilities Act requirements.[ needs update ]

Fundingsland's home-made telescope

John O. Fundingsland was apparently unaware of Pfund's telescope design, and independently developed the same optical configuration. In 1999 he published a description of his 4 aperture prototype instrument in an amateur astronomy magazine. [4]

See also

Footnotes

  1. A cylindrical hole would quickly block light passing through the flat from the primary mirror as the steering flat tilt angle increases.
  2. Departures from flatness, from figure error or deflection, or both, rapidly introduce unacceptable astigmatism in the image.
  3. The Wheelchair Access Telescope is unique in that it will employ two 18 f/8 mirrors arranged on a north–south line and facing each other, with the steering flat halfway between. The north 18 mirror covers the northern half-hemisphere of the sky, and the south 18 mirror covers the south sky, thus providing full sky coverage, which is not possible with a single-mirror Pfund.

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Phased array</span> Array of antennas creating a steerable beam

In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving the antennas. The general theory of an electromagnetic phased array also finds applications in ultrasonic and medical imaging application and in optics optical phased array.

<span class="mw-page-title-main">Radio telescope</span> Directional radio antenna used in radio astronomy

A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Parabolic reflector</span> Reflector that has the shape of a paraboloid

A parabolicreflector is a reflective surface used to collect or project energy such as light, sound, or radio waves. Its shape is part of a circular paraboloid, that is, the surface generated by a parabola revolving around its axis. The parabolic reflector transforms an incoming plane wave travelling along the axis into a spherical wave converging toward the focus. Conversely, a spherical wave generated by a point source placed in the focus is reflected into a plane wave propagating as a collimated beam along the axis.

<span class="mw-page-title-main">Ritchey–Chrétien telescope</span> Specialized Cassegrain telescope

A Ritchey–Chrétien telescope is a specialized variant of the Cassegrain telescope that has a hyperbolic primary mirror and a hyperbolic secondary mirror designed to eliminate off-axis optical errors (coma). The RCT has a wider field of view free of optical errors compared to a more traditional reflecting telescope configuration. Since the mid 20th century, a majority of large professional research telescopes have been Ritchey–Chrétien configurations; some well-known examples are the Hubble Space Telescope, the Keck telescopes and the ESO Very Large Telescope.

<span class="mw-page-title-main">Parabolic antenna</span> Type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently sized reflectors can be used.

<span class="mw-page-title-main">Reflecting telescope</span> Telescopes which utilize curved mirrors to form an image

A reflecting telescope is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternative to the refracting telescope which, at that time, was a design that suffered from severe chromatic aberration. Although reflecting telescopes produce other types of optical aberrations, it is a design that allows for very large diameter objectives. Almost all of the major telescopes used in astronomy research are reflectors. Many variant forms are in use and some employ extra optical elements to improve image quality or place the image in a mechanically advantageous position. Since reflecting telescopes use mirrors, the design is sometimes referred to as a catoptric telescope.

<span class="mw-page-title-main">Green Bank Telescope</span> Radio telescope in Green Bank, WV, US

The Robert C. Byrd Green Bank Telescope (GBT) in Green Bank, West Virginia, US is the world's largest fully steerable radio telescope, surpassing the Effelsberg 100-m Radio Telescope in Germany. The Green Bank site was part of the National Radio Astronomy Observatory (NRAO) until September 30, 2016. Since October 1, 2016, the telescope has been operated by the independent Green Bank Observatory. The telescope's name honors the late Senator Robert C. Byrd who represented West Virginia and who pushed the funding of the telescope through Congress.

<span class="mw-page-title-main">Dobsonian telescope</span> Type of Newtonian telescope popularized by John Dobson

A Dobsonian telescope is an altazimuth-mounted Newtonian telescope design popularized by John Dobson in 1965 and credited with vastly increasing the size of telescopes available to amateur astronomers. Dobson's telescopes featured a simplified mechanical design that was easy to manufacture from readily available components to create a large, portable, low-cost telescope. The design is optimized for observing faint, deep-sky objects such as nebulae and galaxies. This type of observation requires a large objective diameter of relatively short focal length and portability for travel to less light-polluted locations.

<span class="mw-page-title-main">Telescope mount</span> Mechanical structure which supports a telescope

A telescope mount is a mechanical structure which supports a telescope. Telescope mounts are designed to support the mass of the telescope and allow for accurate pointing of the instrument. Many sorts of mounts have been developed over the years, with the majority of effort being put into systems that can track the motion of the fixed stars as the Earth rotates.

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<span class="mw-page-title-main">Southern African Large Telescope</span> Astronomical optical telescope

The Southern African Large Telescope (SALT) is a 9.2-metre optical telescope designed mainly for spectroscopy. It consists of 91 hexagonal mirror segments each with a 1-metre inscribed diameter, resulting in a total hexagonal mirror of 11.1 by 9.8 m. However, its effective aperture is only 9.2 m. It is located close to the town of Sutherland in the semi-desert region of the Karoo, South Africa. It is a facility of the South African Astronomical Observatory, the national optical observatory of South Africa.

<span class="mw-page-title-main">Angular diameter</span> How large a sphere or circle appears

The angular diameter, angular size, apparent diameter, or apparent size is an angular distance describing how large a sphere or circle appears from a given point of view. In the vision sciences, it is called the visual angle, and in optics, it is the angular aperture. The angular diameter can alternatively be thought of as the angular displacement through which an eye or camera must rotate to look from one side of an apparent circle to the opposite side. Humans can resolve with their naked eyes diameters down to about 1 arcminute. This corresponds to 0.3 m at a 1 km distance, or to perceiving Venus as a disk under optimal conditions.

<span class="mw-page-title-main">Altazimuth mount</span> Support mechanism with rotation about the horizontal and vertical axes

An altazimuth mount or alt-azimuth mount is a simple two-axis mount for supporting and rotating an instrument about two perpendicular axes – one vertical and the other horizontal. Rotation about the vertical axis varies the azimuth of the pointing direction of the instrument. Rotation about the horizontal axis varies the altitude angle of the pointing direction.

<span class="mw-page-title-main">Cassegrain reflector</span> Combination of concave and convex mirrors

The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system.

<span class="mw-page-title-main">Liquid-mirror telescope</span> Telescope whose mirror is a reflective liquid

Liquid-mirror telescopes are telescopes with mirrors made with a reflective liquid. The most common liquid used is mercury, but other liquids will work as well. The liquid and its container are rotated at a constant speed around a vertical axis, which causes the surface of the liquid to assume a paraboloidal shape. This parabolic reflector can serve as the primary mirror of a reflecting telescope. The rotating liquid assumes the same surface shape regardless of the container's shape; to reduce the amount of liquid metal needed, and thus weight, a rotating mercury mirror uses a container that is as close to the necessary parabolic shape as feasible. Liquid mirrors can be a low-cost alternative to conventional large telescopes. Compared to a solid glass mirror that must be cast, ground, and polished, a rotating liquid-metal mirror is much less expensive to manufacture.

Polar alignment is the act of aligning the rotational axis of a telescope's equatorial mount or a sundial's gnomon with a celestial pole to parallel Earth's axis.

Focal-plane arrays (FPAs) are widely used in radio astronomy. FPAs are arrays of receivers placed at the focus of the optical system in a radio-telescope. The optical system may be a reflector or a lens. Traditional radio-telescopes have only one receiver at the focus of the telescope, but radio-telescopes are now starting to be equipped with focal plane arrays, which are of three different types: multi-beam feed arrays, bolometer arrays, and the experimental phased-array feeds.

<span class="mw-page-title-main">Position of the Sun</span> Calculating the Suns location in the sky at a given time and place

The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic.

References

  1. "Infrared Spatial Interferometer Array". Berkeley, CA: University of California.
  2. Townes, Charles H. (1999). How the Laser Happened (pbk ed.). Oxford University Press. pp. 184–185. ISBN   0-19-515376-6.
  3. Manly, Peter L. (1999). Unusual Telescopes (pbk ed.). Cambridge University Press. pp. 136–137. ISBN   0-521-48393-X.
  4. Fundingsland, John O. (August 1992). "Easy viewing with a fixed telescope". Sky and Telescope . pp. 212–215.