Phase-comparison monopulse

Last updated

Phase-comparison monopulse is a technique used in radio frequency (RF) applications such as radar and direction finding to accurately estimate the direction of arrival of a signal from the phase difference of the signal measured on two (or more) separated antennas [1] or more typically from displaced phase centers of an array antenna. Phase-comparison monopulse differs from amplitude-comparison monopulse in that the former uses displaced phase centers with a common beam pointing direction, while the latter uses a common phase center and displaced beam pointing directions. [2]

Contents

In phase-comparison monopulse, typically an array is subdivided into sub-arrays, and then a "sum" and a "difference" or "del" channel are formed. For a linear array, these subarrays would each be half of the elements, divided in the middle. For a planar array, these sub-arrays would be the four quadrants of the array, each with 1/4 of the array's elements. In a linear array, the output of each sub-array is summed to form the "sum" channel, and the same outputs are subtracted to form the "del" channel. The monopulse ratio is formed by dividing the imaginary part of the del channel by the real part of the sum channel. This ratio gives an error signal that indicates to a high degree of accuracy the actual target angle as compared to the center of the beam. For a planar array, one sum channel is formed as the sum of the outputs of all four quadrants, but two del channels are formed, one for the elevation dimension and one for the orthogonal azimuth dimension. Two monopulse ratios are formed just as with a linear array, each one indicating the deviation angle in one dimension from the center of the beam. [3]

There are some common misconceptions about phase comparison monopulse. First, only one beam is formed. Monopulse processing is done entirely with the received signal in the array manifold and beam forming network. Speaking in terms of only one dimension for clarity, such as with a linear array, the signal is received by the array and summed into each of two subarrays with displaced phase centers. The sum channel is formed simply by adding these two subarray outputs, and the result is exactly the same as if the entire array was initially summed in one step. The del channel is formed simply by subtracting these same subarray outputs. Second, phase-comparison monopulse doesn't technically actually do a phase comparison, but rather simply divides the del channel by the sum channel to arrive at a ratio wherein the angle information is encoded. [4] The following mathematical derivation should make it clear why this is so.

Mathematics

Sum Pattern

We can define the beam pattern (array factor) of a uniform linear array (ULA) with N elements, as: [5]

, where is the array manifold vector and is a vector of complex weights representing amplitude and phase adjustments applied to each antenna element. The manifold vector, , fully encapsulates all of the spatial properties of the array. is the distance between elements of the array, and is the angle of arrival of an incident plane wave, defined from end-fire, i.e., is a signal from array broadside.

It is common to perform a variable substitution to -space, where , and therefore we have:

and we can more easily see that is simply the phase shift between adjacent elements. The term simply references the absolute phase to the physical center of the array.

Notice that this result is the same if we instead first sum each half of the array, then add those results together.

The weight vector is a combination of a steering vector that steers the beam in a steered direction, , using phase adjustments and an amplitude taper that is often applied to reduce sidelobes. Thus, , and

, where .

We can clearly see now that the beam pattern, in -space, is the spatial equivalent of the discrete time Fourier transform (DTFT) of the array amplitude tapering vector times a linear phase term. The advantage of -space is that the beam shape is identical no matter where it is steered, and is only a function of the deviation of the desired target phase from the actual target phase.

Let us now assume an un-tapered, normalized array with . The beam pattern can be easily shown to be the familiar aliased sinc (asinc) function:

This pattern is also known, for monopulse purposes, as the "sum" pattern, as it was obtained by summing all of the elements together. Going forward we will suppress the subscript and instead use only with the understanding that it represents the deviation of the steered target phase and the actual target phase.

Difference Pattern

Let us now develop the monopulse "difference" or "del" pattern by dividing the array into two equal halves called subarrays. We could have just as easily derived the sum pattern by first determining the pattern of each subarray individually and adding these two results together. In monopulse practice, this is what is actually done. The reader is left to show that is conjugate symmetric, so it can be re-written in terms of only its first half, using an exchange matrix, , that "flips" this vector.

Note that . Assuming that N is even (we could just as easily develop this using an odd N), [6]

If we assume that the weight matrix is also conjugate symmetric (a good assumption), then

and the sum beam pattern can be rewritten as: [7]

The difference or "del" pattern can easily be inferred from the sum pattern simply by flipping the sign of the weights for the second half of the array:

Again assuming that , the del pattern can be shown to reduce to:

Mono-pulse sum and difference (del) patterns Mono-pulse sum and difference (del) patterns.png
Mono-pulse sum and difference (del) patterns

Monopulse Ratio

The monopulse ratio is formed as:

One can see that, within the 3dB beam width of the system, the monopulse ratio is almost linear. In fact, for many systems a linear approximation is good enough. One can also note that the monopulse ratio is continuous within the null-to-null beam width, but has asymptotes that occur at the beam nulls. Therefore, the monopulse ratio is only accurate to measure the deviation angle of a target within the main lobe of the system. However, targets detected in the sidelines of a system, if not mitigated, will produce erroneous results regardless.

Mono-pulse ratio within 1 beamwidth of the main response axis Mono-pulse ratio.png
Mono-pulse ratio within 1 beamwidth of the main response axis

Concept of Operations

Before performing monopulse processing, a system must first detect a target, which it does as normal using the sum channel. All of the typical measurements that a non-monopulse system make are done using the sum channel, e.g., range, Doppler, and angle. However, the angle measurement is limited in that the target could be anywhere within the beam width of the sum beam, and therefore the system can only assume that the beam pointing direction is the same as the actual target angle. In reality, of course, the actual target angle and the beam steered angle will differ.

Therefore, a monopulse processor functions by first detecting and measuring the target signal on the sum channel. Then, only as necessary for detected targets, it measures the same signal on the "del" channel, dividing the imaginary part of this result by the real part of the "sum" channel, then converting this ratio to a deviation angle using the relationships:

and

This deviation angle, which can be positive or negative, is added to the beam pointing angle to arrive at the more accurate estimate of the actual target bearing angle. Of course, if the array is 2-dimensional, such as a planar array, there are two del channels, one for elevation and one for azimuth, and therefore two monopulse ratios are formed.

See also

Related Research Articles

Pauli matrices Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

Laplaces equation Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

Potential flow

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid approximation for several applications. The irrotationality of a potential flow is due to the curl of the gradient of a scalar always being equal to zero.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements.

Rabi cycle Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an oscillatory driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

Bloch sphere Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

Quantum logic gate Basic circuit in quantum computing

In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

Screw theory Mathematical formulation of vector pairs used in physics (rigid body dynamics)

Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms.

Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the dynamics community commonly refers to quaternions in this application as "Euler parameters".

Jaynes–Cummings model Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.

Gravitational lensing formalism

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

The direct-quadrature-zerotransformation or zero-direct-quadraturetransformation is a tensor that rotates the reference frame of a three-element vector or a three-by-three element matrix in an effort to simplify analysis. The DQZ transform is the product of the Clarke transform and the Park transform, first proposed in 1929 by Robert H. Park.

In quantum computing, the quantum phase estimation algorithm, is a quantum algorithm to estimate the phase of an eigenvector of a unitary operator. More precisely, given a unitary matrix and a quantum state such that , the algorithm estimates the value of with high probability within additive error , using qubits and controlled-U operations. The algorithm was initially introduced by Alexei Kitaev in 1995.

Partial-wave analysis, in the context of quantum mechanics, refers to a technique for solving scattering problems by decomposing each wave into its constituent angular-momentum components and solving using boundary conditions.

Grating lobes

For discrete aperture antennas in which the element spacing is greater than a half wavelength, a spatial aliasing effect allows plane waves incident to the array from visible angles other than the desired direction to be coherently added, causing grating lobes. Grating lobes are undesirable and identical to the main lobe. The perceived difference seen in the grating lobes is because of the radiation pattern of non-isotropic antenna elements, which effects main and grating lobes differently. For isotropic antenna elements, the main and grating lobes are identical.

References

  1. Mahafza, Bassem R. (1998). Introduction to radar analysis; Electrical Engineering Radar Signal Processing. CRC Press. p. 251. ISBN   0-8493-1879-3.
  2. Sherman, Samuel M. Monopulse Principles and Techniques, 2nd Edition. Artech House. p. 72.
  3. Sherman, Samuel M. Monopulse Principles and Techniques, 2nd Edition. Artech House.
  4. Sherman, Samuel M. Monopulse Principles and Techniques, 2nd Edition. Artech House. pp. 70–74.
  5. Van Trees, H.L. (2002). Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, Inc. p. 39.
  6. Van Trees, H.L. (2002). Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, Inc. p. 40.
  7. Van Trees, H.L. (2002). Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, Inc. p. 40.