Phosvitin

Last updated
Phosvitin structure adapted from vitellogenin AlphaFold (AF-P02845-F1; residues 1112-1328) with serine residues highlighted in red. Visualized using ChimeraX. Phosvitin.png
Phosvitin structure adapted from vitellogenin AlphaFold (AF-P02845-F1; residues 1112-1328) with serine residues highlighted in red. Visualized using ChimeraX.

Phosvitin is one of the egg (commonly hen's egg) yolk [1] [2] phosphoproteins known for being the most phosphorylated protein found in nature. [3] [4] [5] Phosvitin isolation was first described by Mecham and Olcott in the year 1949. [3] [6] Recently it has been shown that phosvitin orchestrates nucleation and growth of biomimetic bone like apatite. [7]

Contents

Structure

As the most phosphorylated natural protein, phosvitin contains 123 phosphoserine residues accounting for 56.7% of its total 217 amino acid residues. [3] [8] The structure of phosvitin at large consists of 4-12 base pair stretches of serines, interspersed with amino acid residues lysine (6.9%), histidine (6.0%), and arginine (5.1%), among others in smaller quantities. [9] Phosvitin’s structure (right) is adapted from the protein vitellogenin (Gene: VTG2; Uniprot: P02845; residues 1-1850) generated by AlphaFold, where all the possible phosphorylated serine residues are highlighted in red. Phosvitin is one of four proteins cleaved from vitellogenin and is unstructured at neutral pH. [3] Despite phosvitin only accounting for 16% of total proteins in egg yolk, it alone accounts for 60% of the total yolk phosphoproteins as well as 90% of the total yolk phosphorus. [10] [8]

Function

Due to phosvitin’s polyanionic activity, the protein performs functionalities such as metal chelation, emulsification, and nutrition sequestration for a growing embryo. [3] Additionally, in recent research it has been shown that the disordered secondary structure of phosvitin orchestrates nucleation and growth of biomimetic bone like apatite. [7]

Related Research Articles

<span class="mw-page-title-main">Tyrosine</span> Amino acid

L-Tyrosine or tyrosine or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the Greek tyrós, meaning cheese, as it was first discovered in 1846 by German chemist Justus von Liebig in the protein casein from cheese. It is called tyrosyl when referred to as a functional group or side chain. While tyrosine is generally classified as a hydrophobic amino acid, it is more hydrophilic than phenylalanine. It is encoded by the codons UAC and UAU in messenger RNA.

<span class="mw-page-title-main">Phosphorylation</span> Chemical process of introducing a phosphate

In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology. Protein phosphorylation often activates many enzymes.

<span class="mw-page-title-main">Yolk</span> Part of an egg which feeds the developing embryo

Among animals which produce eggs, the yolk is the nutrient-bearing portion of the egg whose primary function is to supply food for the development of the embryo. Some types of egg contain no yolk, for example because they are laid in situations where the food supply is sufficient or because the embryo develops in the parent's body, which supplies the food, usually through a placenta. Reproductive systems in which the mother's body supplies the embryo directly are said to be matrotrophic; those in which the embryo is supplied by yolk are said to be lecithotrophic. In many species, such as all birds, and most reptiles and insects, the yolk takes the form of a special storage organ constructed in the reproductive tract of the mother. In many other animals, especially very small species such as some fish and invertebrates, the yolk material is not in a special organ, but inside the egg cell.

<span class="mw-page-title-main">14-3-3 protein</span> Family of conserved regulatory molecules

14-3-3 proteins are a family of conserved regulatory molecules that are expressed in all eukaryotic cells. 14-3-3 proteins have the ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. More than 200 signaling proteins have been reported as 14-3-3 ligands.

<span class="mw-page-title-main">Stathmin</span> Protein in Eukaryotes

Stathmin, also known as metablastin and oncoprotein 18 is a protein that in humans is encoded by the STMN1 gene.

Vitellogenin is a precursor of egg yolk that transports protein and some lipid from the liver through the blood to the growing oocytes where it becomes part of the yolk. Normally, it is only found in the blood or hemolymph of females, and can therefore be used as a biomarker in vertebrates of exposure to environmental estrogens which stimulate elevated levels in males as well as females. "Vitellogenin" is a synonymous term for the gene and the expressed protein. The protein product is classified as a glycolipoprotein, having properties of a sugar, fat and protein. It belongs to a family of several lipid transport proteins.

Phosphopeptides are modified self antigens which may induce an immune response.

<span class="mw-page-title-main">Vitellogenesis</span> Formation of yolk to be used for embryonic nutrition

Vitellogenesis is the process of yolk protein formation in the oocytes during sexual maturation. The term vitellogenesis comes from the Latin vitellus. Yolk proteins, such as Lipovitellin and Phosvitin, provides maturing oocytes with the metabolic energy required for development. Vitellogenins are the precursor proteins that lead to yolk protein accumulation in the oocyte. In vertebrates, estrogen and vitellogenin production have a positive correlation. When estrogen production in the ovary is increased via the activation of the hypothalmo-pituitary axis it leads to heightened vitellogenin production in the liver. Vitellogenin production in the liver is the first step of vitellogenesis. Once Vitellogenins are released into the blood stream where they are then transported to the growing oocyte where they lead to yolk protein production. The transport of vitellogenins into the maturing oocyte is done via endocytosis mediated by a receptor which is a low-density lipoprotein receptor (LDLR). Yolk is a lipoprotein composed of proteins, phospholipids and neutral fats along with a small amount of glycogen. The yolk is synthesised in the liver of the female parent in soluble form. Through circulation it is transported to the follicle cells that surround the maturing ovum, and is deposited in the form of yolk platelets and granules in the ooplasm. The mitochondria and Golgi complex are said to bring about the conversion of the soluble form of yolk into insoluble granules or platelets.

<span class="mw-page-title-main">Serine/threonine-specific protein kinase</span> Class of protein kinase enzymes

A serine/threonine protein kinase is a kinase enzyme, in particular a protein kinase, that phosphorylates the OH group of the amino-acid residues serine or threonine, which have similar side chains. At least 350 of the 500+ human protein kinases are serine/threonine kinases (STK).

Phosphoproteomics is a branch of proteomics that identifies, catalogs, and characterizes proteins containing a phosphate group as a posttranslational modification. Phosphorylation is a key reversible modification that regulates protein function, subcellular localization, complex formation, degradation of proteins and therefore cell signaling networks. With all of these modification results, it is estimated that between 30–65% of all proteins may be phosphorylated, some multiple times. Based on statistical estimates from many datasets, 230,000, 156,000 and 40,000 phosphorylation sites should exist in human, mouse, and yeast, respectively.

<span class="mw-page-title-main">Anautogeny</span> Parasitic insect reproductive strategy

In entomology, anautogeny is a reproductive strategy in which an adult female insect must eat a particular sort of meal before laying eggs in order for her eggs to mature. This behavior is most common among dipteran insects, such as mosquitoes. Anautogenous animals often serve as vectors for infectious disease in their hosts because of their contact with hosts' blood. The opposite trait is known as autogeny.

<span class="mw-page-title-main">Ovotransferrin</span> Protein found in egg whites

Ovotransferrin (conalbumin) is a glycoprotein of egg white albumen. Egg white albumen is composed of multiple proteins, of which ovotransferrin is the most heat reliable. It has a molecular weight of 76,000 daltons and contains about 700 amino acids. Ovotransferrin makes up approximately 13% of egg albumen. As a member of the transferrin and metalloproteinase family, ovotransferrin has been found to possess antibacterial and antioxydant and immunomodulatory properties, arising primarily through its iron (Fe3+) binding capacity by locking away a key biochemical component necessary for micro-organismal survival. Bacteria starved of iron are rendered incapable of moving, making ovotransferrin a potent bacteriostatic.

Polo-like kinases (Plks) are regulatory serine/threonine kinases of the cell cycle involved in mitotic entry, mitotic exit, spindle formation, cytokinesis, and meiosis. Only one Plk is found in the genomes of the fly Drosophila melanogaster (Polo), budding yeast (Cdc5) and fission yeast (Plo1). Vertebrates and other animals, however, have many Plk family members including Plk1, Plk2/Snk, Plk3/Prk/FnK, Plk4/Sak and Plk5. Of the vertebrate Plk family members, the mammalian Plk1 has been most extensively studied. During mitosis and cytokinesis, Plks associate with several structures including the centrosome, kinetochores, and the central spindle.

In enzymology, a Goodpasture-antigen-binding protein kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">60S acidic ribosomal protein P1</span> Protein found in humans

60S acidic ribosomal protein P1 is a protein that in humans is encoded by the RPLP1 gene.

<span class="mw-page-title-main">Protein phosphorylation</span> Process of introducing a phosphate group on to a protein

Protein phosphorylation is a reversible post-translational modification of proteins in which an amino acid residue is phosphorylated by a protein kinase by the addition of a covalently bound phosphate group. Phosphorylation alters the structural conformation of a protein, causing it to become activated, deactivated, or otherwise modifying its function. Approximately 13,000 human proteins have sites that are phosphorylated.

<span class="mw-page-title-main">Eggs as food</span> Edible animal product

Humans and their hominid relatives have consumed eggs for millions of years. The most widely consumed eggs are those of fowl, especially chickens. People in Southeast Asia began harvesting chicken eggs for food by 1500 BCE. Eggs of other birds, such as ducks and ostriches, are eaten regularly but much less commonly than those of chickens. People may also eat the eggs of reptiles, amphibians, and fish. Fish eggs consumed as food are known as roe or caviar.

Vitellin is a protein found in the egg yolk. It is a phosphoprotein. Vitellin is a generic name for major of many yolk proteins.

Immunoglobulin Y is a type of immunoglobulin which is the major antibody in bird, reptile, and lungfish blood. It is also found in high concentrations in chicken egg yolk. As with the other immunoglobulins, IgY is a class of proteins which are formed by the immune system in reaction to certain foreign substances, and specifically recognize them.

Aminopeptidase Ey is an enzyme. This enzyme catalyses differs from other aminopeptidases in broad specificity for amino acids in the P1 position and the ability to hydrolyse peptides of four or five residues that contain Pro in the P1' position

References

  1. Joubert, F. J.; Cook, W. H. (1958). "Preparation And Characterization Of Phosvitin From Hen Egg Yolk". Canadian Journal of Biochemistry and Physiology. 36 (4): 399–408. doi:10.1139/o58-045. PMID   13511246.
  2. Clark, Richard C. (1980). "Relative and total abundance of constituent phosphoproteins from hen phosvitin in egg yolk". International Journal of Biochemistry. 12 (4): 651–653. doi:10.1016/0020-711x(80)90021-x. PMID   7428998.
  3. 1 2 3 4 5 Samaraweera, Himali (Sep 2011). "Egg Yolk Phosvitin and Functional Phosphopeptides—Review". Journal of Food Science. 76 (7): R143–R150. doi:10.1111/j.1750-3841.2011.02291.x. PMID   21806612.
  4. Taborsky, George (1963). "Interaction Between Phosvitin and Iron and Its Effect on a Rearrangement of Phosvitin Structure". Biochemistry. 2 (2): 266–271. doi:10.1021/bi00902a010. PMID   13980103.
  5. Jung, Samooel; et al. (Dec 2012). "The functional property of egg yolk phosvitin as a melanogenesis inhibitor". Food Chemistry. 135 (3): 993–998. doi:10.1016/j.foodchem.2012.05.113. PMID   22953815.
  6. Allerton, Samuel E.; Perlmank, Gertrude E. (Oct 1965). "Chemical Characterization of the Phosphoprotein Phosvitin". The Journal of Biological Chemistry. 240 (10): 3892–3898. PMID   5891575.
  7. 1 2 Sarem, Melika; Lüdeke, Steffen; Thomann, Ralf; Salavei, Pavel; Zou, Zhaoyong; Habraken, Wouter; Masic, Admir; Shastri, V. Prasad (2017-07-17). "Disordered Conformation with Low Pii Helix in Phosphoproteins Orchestrates Biomimetic Apatite Formation". Advanced Materials. 29 (35): 1701629. doi:10.1002/adma.201701629. ISSN   0935-9648. PMID   28714191.
  8. 1 2 Chang, Chang; Lahti, Todd; Tanaka, Takuji; Nickerson, Michael T (2018-03-23). "Egg proteins: fractionation, bioactive peptides and allergenicity". Journal of the Science of Food and Agriculture. 98 (15): 5547–5558. doi:10.1002/jsfa.9150. ISSN   0022-5142.
  9. Chay Pak Ting, B.P.; Pouliot, Y.; Gauthier, S.F.; Mine, Y. (2013), "Fractionation of egg proteins and peptides for nutraceutical applications", Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries, Elsevier, pp. 595–618, doi:10.1533/9780857090751.2.595, ISBN   978-1-84569-645-0 , retrieved 2024-04-26
  10. Yilmaz, Birsen; Ağagündüz, Duygu (2020-09-23). "Bioactivities of hen's egg yolk phosvitin and its functional phosphopeptides in food industry and health". Journal of Food Science. 85 (10): 2969–2976. doi:10.1111/1750-3841.15447. ISSN   0022-1147.

Further reading