Photonic-crystal fiber

Last updated

SEM micrographs of a photonic-crystal fiber produced at US Naval Research Laboratory. (left) The diameter of the solid core at the center of the fiber is 5 mm, while (right) the diameter of the holes is 4 mm Photonic-crystal-fiber-from-NRL.jpg
SEM micrographs of a photonic-crystal fiber produced at US Naval Research Laboratory. (left) The diameter of the solid core at the center of the fiber is 5 μm, while (right) the diameter of the holes is 4 μm
Diagram of a photonic crystal fiber in perspective and cross-sectional views. A solid-core fiber is shown with a periodic air hole cladding and a solid blue coating. Photonic-crystal fiber.jpg
Diagram of a photonic crystal fiber in perspective and cross-sectional views. A solid-core fiber is shown with a periodic air hole cladding and a solid blue coating.

Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas. More specific categories of PCF include photonic-bandgap fiber (PCFs that confine light by band gap effects), holey fiber (PCFs using air holes in their cross-sections), hole-assisted fiber (PCFs guiding light by a conventional higher-index core modified by the presence of air holes), and Bragg fiber (photonic-bandgap fiber formed by concentric rings of multilayer film). Photonic crystal fibers may be considered a subgroup of a more general class of microstructured optical fibers, where light is guided by structural modifications, and not only by refractive index differences.

Contents

Description

Optical fibers have evolved into many forms since the practical breakthroughs that saw their wider introduction in the 1970s as conventional step index fibers [1] [2] and later as single material fibers where propagation was defined by an effective air cladding structure. [3]

In general, regular structured fibers such as photonic crystal fibers, have a cross-section (normally uniform along the fiber length) consisting of one, two or more materials, most commonly arranged periodically over much of the cross-section. This zone is known as the "cladding" and surrounds a core (or several cores) where light is confined. For example, the fibers first demonstrated by Philip Russell consisted of a hexagonal lattice of air holes in a silica fiber, with a solid [4] or hollow [5] core at the center where light is guided. Other arrangements include concentric rings of two or more materials, first proposed as "Bragg fibers" by Yeh and Yariv, [6] bow-tie, panda, and elliptical hole structures (used to achieve higher birefringence due to irregularity in the relative refractive index), spiral [7] designs which allow for better control over optical properties as individual parameters can be changed.

(Note: PCFs and, in particular, Bragg fibers, should not be confused with fiber Bragg gratings, which consist of a periodic refractive index or structural variation along the fiber axis, as opposed to variations in the transverse directions as in PCF. Both PCFs and fiber Bragg gratings employ Bragg diffraction phenomena, albeit in different directions.)

The lowest reported attenuation of solid core photonic crystal fiber is 0.37 dB/km, [8] and for hollow core is 1.2 dB/km. [9]

Construction

Generally, such fibers are constructed by the same methods as other optical fibers: first, one constructs a "preform" on the scale of centimeters in size, and then heats the preform and draws it down to a much smaller diameter (often nearly as small as a human hair), shrinking the preform cross section but (usually) maintaining the same features. In this way, kilometers of fiber can be produced from a single preform. Air holes are most commonly created by gathering hollow rods into a bundle, and heating the bundle to fuse it into a single rod with ordered holes before drawing, although drilling/milling was used to produce the first aperiodic designs. [10] This formed the subsequent basis for producing the first soft glass and polymer structured fibers.

Most photonic crystal fibers have been fabricated in silica glass, but other glasses have also been used to obtain particular optical properties (such as high optical non-linearity). There is also a growing interest in making them from polymer, where a wide variety of structures have been explored, including graded index structures, ring structured fibers and hollow core fibers. These polymer fibers have been termed "MPOF", short for microstructured polymer optical fibers. [11] A combination of a polymer and a chalcogenide glass was used by Temelkuran et al. [12] in 2002 for 10.6 μm wavelengths (where silica is not transparent).

Modes of operation

Diagram in cross-sectional view of two types of photonic crystal fibers: index guide (left) and photonic bandgap (right). Photonic Crystal Fibers Diagram (index guide and photonic bandgap).jpg
Diagram in cross-sectional view of two types of photonic crystal fibers: index guide (left) and photonic bandgap (right).

Photonic crystal fibers can be divided into two modes of operation, according to their mechanism for confinement: index guiding and photonic bandgap.

Index guiding photonic crystal fibers are characterized by a core with a higher average refractive index than that of the cladding. The simplest way to accomplish this is to maintain a solid core, surrounded by a cladding region of the same material but interspersed with air holes, as the refractive index of the air will necessarily lower the average refractive index of the cladding. These photonic crystal fibers operate on the same index-guiding principle as conventional optical fiber—however, they can have a much higher effective refractive index contrast between core and cladding, and therefore can have much stronger confinement for applications in nonlinear optical devices, polarization-maintaining fibers. Alternatively, they can also be made with much lower effective index contrast.

Alternatively, one can create a photonic bandgap photonic crystal fiber, in which the light is confined by a photonic bandgap created by the microstructured cladding—such a bandgap, properly designed, can confine light in a lower-index core and even a hollow (air) core. Bandgap fibers with hollow cores can potentially circumvent limits imposed by available materials, for example to create fibers that guide light in wavelengths for which transparent materials are not available (because the light is primarily in the air, not in the solid materials). Another potential advantage of a hollow core is that one can dynamically introduce materials into the core, such as a gas that is to be analyzed for the presence of some substance. PCF can also be modified by coating the holes with sol-gels of similar or different index material to enhance the transmittance of light.

History

The term "photonic-crystal fiber" was coined by Philip Russell in 1995–1997 (he states (2003) that the idea dates to unpublished work in 1991).

See also

Related Research Articles

In a single-mode optical fiber, the zero-dispersion wavelength is the wavelength or wavelengths at which material dispersion and waveguide dispersion cancel one another. In all silica-based optical fibers, minimum material dispersion occurs naturally at a wavelength of approximately 1300 nm. Single-mode fibers may be made of silica-based glasses containing dopants that shift the material-dispersion wavelength, and thus, the zero-dispersion wavelength, toward the minimum-loss window at approximately 1550 nm. The engineering tradeoff is a slight increase in the minimum attenuation coefficient. Such fiber is called dispersion-shifted fiber.

<span class="mw-page-title-main">Photonic crystal</span> Periodic optical nanostructure that affects the motion of photons

A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.

In optics, an ARROW is a type of waveguide that uses the principle of thin-film interference to guide light with low loss. It is formed from an anti-resonant Fabry–Pérot reflector. The optical mode is leaky, but relatively low-loss propagation can be achieved by making the Fabry–Pérot reflector of sufficiently high quality or small size.

<span class="mw-page-title-main">ZBLAN</span> Type of metal fluoride glass

ZBLAN is the most stable, and consequently the most used, fluoride glass, a subcategory of the heavy metal fluoride glass (HMFG) group. Typically its composition is 53% ZrF4, 20% BaF2, 4% LaF3, 3% AlF3 and 20% NaF. ZBLAN is not a single material but rather has a spectrum of compositions, many of which are still untried. The biggest library in the world of ZBLAN glass compositions is currently owned by Le Verre Fluore, the oldest company working on HMFG technology. Other current ZBLAN fiber manufacturers are Thorlabs and KDD Fiberlabs. Hafnium fluoride is chemically similar to zirconium fluoride, and is sometimes used in place of it.

<span class="mw-page-title-main">Fiber Bragg grating</span> Type of distributed Bragg reflector constructed in a short segment of optical fiber

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. Hence a fiber Bragg grating can be used as an inline optical fiber to block certain wavelengths, can be used for sensing applications, or it can be used as wavelength-specific reflector.

<span class="mw-page-title-main">Distributed Bragg reflector</span> Structure used in waveguides

A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers. It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic of a dielectric waveguide, resulting in periodic variation in the effective refractive index in the guide. Each layer boundary causes a partial reflection and refraction of an optical wave. For waves whose vacuum wavelength is close to four times the optical thickness of the layers, the interaction between these beams generates constructive interference, and the layers act as a high-quality reflector. The range of wavelengths that are reflected is called the photonic stopband. Within this range of wavelengths, light is "forbidden" to propagate in the structure.

<span class="mw-page-title-main">Plastic optical fiber</span> Optical fiber that is made out of polymer

Plastic optical fiber (POF) or polymer optical fiber is an optical fiber that is made out of polymer. Similar to glass optical fiber, POF transmits light through the core of the fiber. Its chief advantage over the glass product, other aspect being equal, is its robustness under bending and stretching.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre in Commonwealth English, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

Philip St. John Russell, FRS, is Emeritus Director of the Max Planck Institute for the Science of Light in Erlangen, Germany. His area of research covers "photonics and new materials", in particular the examination of new optical materials, especially of photonic crystal fibres, and more generally the field of nano- and micro-structured photonic materials.

<span class="mw-page-title-main">Supercontinuum</span>

In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam, for example using a microstructured optical fiber. The result is a smooth spectral continuum. There is no consensus on how much broadening constitutes a supercontinuum; however researchers have published work claiming as little as 60 nm of broadening as a supercontinuum. There is also no agreement on the spectral flatness required to define the bandwidth of the source, with authors using anything from 5 dB to 40 dB or more. In addition the term supercontinuum itself did not gain widespread acceptance until this century, with many authors using alternative phrases to describe their continua during the 1970s, 1980s and 1990s.

<span class="mw-page-title-main">Subwavelength-diameter optical fibre</span>

A subwavelength-diameter optical fibre is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part. Due to such a strong geometrical confinement, the guided electromagnetic field in an SDF is restricted to a single mode called fundamental.

<span class="mw-page-title-main">Hard-clad silica optical fiber</span>

Hard-clad silica (HCS) or polymer-clad fiber (PCF) is an optical fiber with a core of silica glass and an optical cladding made of special plastic. In contrast to all-silica fiber, the core and cladding can be separated from each other.

<span class="mw-page-title-main">PHOSFOS</span>

PhoSFOS is a research and technology development project co-funded by the European Commission.

Cladding in optical fibers is one or more layers of materials of lower refractive index in intimate contact with a core material of higher refractive index.

Optofluidics is a research and technology area that combines the advantages of fluidics and optics. Applications of the technology include displays, biosensors, lab-on-chip devices, lenses, and molecular imaging tools and energy.

<span class="mw-page-title-main">Structural coloration</span> Colour in living creatures caused by interference effects

Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination with pigments. For example, peacock tail feathers are pigmented brown, but their microscopic structure makes them also reflect blue, turquoise, and green light, and they are often iridescent.

Microstructured optical fibers (MOF) are optical fiber waveguides where guiding is obtained through manipulation of waveguide structure rather than its index of refraction.

<span class="mw-page-title-main">Jonathan C. Knight</span> British physicist (born 1964)

Jonathan C. Knight, is a British physicist. He is the Pro Vice-Chancellor (Research) for the University of Bath where he has been Professor in the Department of Physics since 2000, and served as head of department. From 2005 to 2008, he was founding Director of the university's Centre for Photonics and Photonic Materials.

Photonic crystal sensors use photonic crystals: nanostructures composed of periodic arrangements of dielectric materials that interact with light depending on their particular structure, reflecting lights of specific wavelengths at specific angles. Any change in the periodicity or refractive index of the structure can give rise to a change in the reflected color, or the color perceived by the observer or a spectrometer. That simple principle makes them useful colorimetric intuitive sensors for different applications including, but not limited to, environmental analysis, temperature sensing, magnetic sensing, biosensing, diagnostics, food quality control, security, and mechanical sensing. Many animals in nature such as fish or beetles employ responsive photonic crystals for camouflage, signaling or to bait their prey. The variety of materials utilizable in such structures ranging from inorganic, organic as well as plasmonic metal nanoparticles makes these structures highly customizable and versatile. In the case of inorganic materials, variation of the refractive index is the most commonly exploited effect in sensing, while periodicity change is more commonly exhibited in polymer-based sensors. Besides their small size, current developments in manufacturing technologies have made them easy and cheap to fabricate on a larger scale, making them mass-producible and practical.

References

  1. Kapron, F. P. (1970). "Radiation Losses in Glass Optical Waveguides". Applied Physics Letters. 17 (10): 423. Bibcode:1970ApPhL..17..423K. doi:10.1063/1.1653255.
  2. Keck, D.B. (1973). "On the ultimate lower limit of attenuation in glass optical waveguides". Applied Physics Letters. 22 (7): 307. Bibcode:1973ApPhL..22..307K. doi:10.1063/1.1654649.
  3. Kaiser P.V., Astle H.W., (1974), Bell Syst. Tech. J., 53, 1021–1039
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996)
  5. doi : 10.1126/science.282.5393.1476.
  6. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am.68, 1196–1201 (1978)
  7. Agrawal, Arti (February 2013). "Stacking the Equiangular Spiral". IEEE Photonics Technology Letters. 25 (3): 291–294. Bibcode:2013IPTL...25..291A. doi: 10.1109/LPT.2012.2236309 . S2CID   30334079 via IEEE.
  8. Tajima K, Zhou J, Nakajima K, Sato K (2004). "Ultralow Loss and Long Length Photonic Crystal Fiber" Journal of Lightwave Technology". Journal of Lightwave Technology. 22 (1): 7–10. Bibcode:2004JLwT...22....7T. doi:10.1109/JLT.2003.822143. S2CID   8045306.
  9. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-236
  10. Canning J, Buckley E, Lyttikainen K, Ryan T (2002). "Wavelength dependent leakage in a Fresnel-based air–silica structured optical fibre". Optics Communications. 205 (1–3): 95–99. Bibcode:2002OptCo.205...95C. doi:10.1016/S0030-4018(02)01305-6.
  11. Martijn A. van Eijkelenborg, Maryanne C. J. Large, Alexander Argyros, Joseph Zagari, Steven Manos, Nader A. Issa, Ian Bassett, Simon Fleming, Ross C. McPhedran, C. Martijn de Sterke, and Nicolae A.P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001)
  12. Temelkuran, Burak; Hart, Shandon D.; Benoit, Gilles; Joannopoulos, John D.; Fink, Yoel (2002). "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission". Nature. 420 (6916): 650–653. Bibcode:2002Natur.420..650T. doi:10.1038/nature01275. PMID   12478288. S2CID   4326376.

Further reading