Picture (mathematics)

Last updated

In combinatorial mathematics, a picture is a bijection between skew diagrams satisfying certain properties, introduced by Zelevinsky (1981) in a generalization of the Robinson–Schensted correspondence and the Littlewood–Richardson rule.

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics, from evolutionary biology to computer science, etc.

Bijection one to one and onto mapping of a set X to a set Y

In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function f: XY is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y.

In mathematics, the Robinson–Schensted correspondence is a bijective correspondence between permutations and pairs of standard Young tableaux of the same shape. It has various descriptions, all of which are of algorithmic nature, it has many remarkable properties, and it has applications in combinatorics and other areas such as representation theory. The correspondence has been generalized in numerous ways, notably by Knuth to what is known as the Robinson–Schensted–Knuth correspondence, and a further generalization to pictures by Zelevinsky.

Related Research Articles

In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to problems of quantum mechanics for a number of identical particles.

In mathematics, restriction is a fundamental construction in representation theory of groups. Restriction forms a representation of a subgroup from a representation of the whole group. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.

Robert Steinberg was a mathematician at the University of California, Los Angeles.

Gilbert de Beauregard Robinson, MBE (1906–1992) was a Canadian mathematician most famous for his work on combinatorics and representation theory of the symmetric groups, including the Robinson-Schensted algorithm.

In mathematics, the Brauer–Suzuki theorem, proved by Brauer & Suzuki (1959), Suzuki (1962), Brauer (1964), states that if a finite group has a generalized quaternion Sylow 2-subgroup and no non-trivial normal subgroups of odd order, then the group has a centre of order 2. In particular, such a group cannot be simple.

George Glauberman is a mathematician at the University of Chicago who works on finite simple groups. He proved the ZJ theorem and the Z* theorem.

In mathematics, George Glauberman's Z* theorem is stated as follows:

Z* theorem: Let G be a finite group, with O(G) being its maximal normal subgroup of odd order. If T is a Sylow 2-subgroup of G containing an involution not conjugate in G to any other element of T, then the involution lies in Z*(G), which is the inverse image in G of the center of G/O(G).

In mathematics, the Littlewood–Richardson rule is a combinatorial description of the coefficients that arise when decomposing a product of two Schur functions as a linear combination of other Schur functions. These coefficients are natural numbers, which the Littlewood–Richardson rule describes as counting certain skew tableaux. They occur in many other mathematical contexts, for instance as multiplicity in the decomposition of tensor products of irreducible representations of general linear groups, or in the decomposition of certain induced representations in the representation theory of the symmetric group, or in the area of algebraic combinatorics dealing with Young tableaux and symmetric polynomials.

In the mathematical field of combinatorics, jeu de taquin is a construction due to Marcel-Paul Schützenberger (1977) which defines an equivalence relation on the set of skew standard Young tableaux. A jeu de taquin slide is a transformation where the numbers in a tableau are moved around in a way similar to how the pieces in the fifteen puzzle move. Two tableaux are jeu de taquin equivalent if one can be transformed into the other via a sequence of such slides.

In mathematics, the Chinese monoid is a monoid generated by a totally ordered alphabet with the relations cba = cab = bca for every abc. An algorithm similar to Schensted's algorithm yields characterisation of the equivalence classes and a cross-section theorem. It was discovered by Duchamp & Krob (1994) during their classification of monoids with growth similar to that of the plactic monoid, and studied in detail by Julien Cassaigne, Marc Espie, Daniel Krob, Jean-Christophe Novelli, and Florent Hivert in 2001.

Ea Ea, formerly Craige Schensted, is a physicist who first formulated the insertion algorithm that defines the Robinson–Schensted correspondence; under a different form, that correspondence had earlier been described by Gilbert de Beauregard Robinson in 1938, but it is due to the Schensted insertion algorithm that the correspondence has become widely known in combinatorics. Schensted also designed several board games including *Star, Star, and Y. In 1995, he changed his name to Ea, the Babylonian name for the Sumerian god Enki, and in 1999 changed it to Ea Ea. He lived on Peaks Island in Portland, Maine.

In mathematics, the Robinson–Schensted–Knuth correspondence, also referred to as the RSK correspondence or RSK algorithm, is a combinatorial bijection between matrices A with non-negative integer entries and pairs (P,Q) of semistandard Young tableaux of equal shape, whose size equals the sum of the entries of A. More precisely the weight of P is given by the column sums of A, and the weight of Q by its row sums. It is a generalization of the Robinson–Schensted correspondence, in the sense that taking A to be a permutation matrix, the pair (P,Q) will be the pair of standard tableaux associated to the permutation under the Robinson–Schensted correspondence.

In mathematics, the Gorenstein–Walter theorem, proved by Gorenstein and Walter (1965a, 1965b, 1965c), states that if a finite group G has a dihedral Sylow 2-subgroup, and O(G) is the maximal normal subgroup of odd order, then G/O(G) is isomorphic to a 2-group, or the alternating group A7, or a subgroup of PΓL2(q) containing PSL2(q) for q an odd prime power. Note that A5 ≈ PSL2(4) ≈ PSL2(5) and A6 ≈ PSL2(9).

In mathematics, Alvis–Curtis duality is a duality operation on the characters of a reductive group over a finite field, introduced by Charles W. Curtis (1980) and studied by his student Dean Alvis (1979). Kawanaka introduced a similar duality operation for Lie algebras.

Andrei Zelevinsky Russian mathematician

Andrei Vladlenovich Zelevinsky was a Russian-American mathematician who made important contributions to algebra, combinatorics, and representation theory, among other areas.

Viennots geometric construction

In mathematics, Viennot's geometric construction gives a diagrammatic interpretation of the Robinson–Schensted correspondence in terms of shadow lines. It has a generalization to the Robinson–Schensted–Knuth correspondence, which is known as the matrix-ball construction.

In mathematics, an acceptable ring is a generalization of an excellent ring, with the conditions about regular rings in the definition of an excellent ring replaced by conditions about Gorenstein rings. Acceptable rings were introduced by Sharp (1977).

In mathematics, a Gelfand ring is an associative ring R with identity such that if I and J are distinct right ideals then there are elements i and j such that iRj=0, i is not in I, and j is not in J. Mulvey (1979) introduced them as rings for which one could prove a generalization of Gelfand duality, and named them after Israel Gelfand.

In mathematical group theory, the Thompson replacement theorem is a theorem about the existence of certain abelian subgroups of a p-group. The Glauberman replacement theorem is a generalization of it introduced by Glauberman.

References

Michiel Hazewinkel Dutch mathematician

Michiel Hazewinkel is a Dutch mathematician, and Emeritus Professor of Mathematics at the Centre for Mathematics and Computer and the University of Amsterdam, particularly known for his 1978 book Formal groups and applications and as editor of the Encyclopedia of Mathematics.

<i>Encyclopedia of Mathematics</i> encyclopedia translated from the Soviet Matematicheskaya entsiklopediya (1977), published by Ky Kluwer Academic Publishers until 2003.

The Encyclopedia of Mathematics is a large reference work in mathematics. It is available in book form and on CD-ROM.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.